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organizations, and entrepreneurs. 
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workforce of tomorrow to deal with new mobility problems in ways 
that are not covered in existing transportation curricula. 

Led by New York University’s Tandon School of Engineering, C2SMART 
is a consortium of leading research universities, including Rutgers 
University, University of Washington, the University of Texas at El 
Paso, and The City College of NY. 
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Executive Summary 

Autonomous vehicles (AV) and connected vehicles (CV) technologies have been much of the focus of 
transportation industry lately. In this project, to reduce congestion and improve network performance 
and safety, we have combined AV and CV technologies for connected and autonomous vehicles (CAVs) 
and developed innovative learning-based optimal control algorithms using reinforcement learning and 
adaptive dynamic programming techniques.  

Firstly, we have developed (data-driven) adaptive learning algorithms to tackle cooperative adaptive 
cruise control (CACC) and combined longitudinal and lateral control of CAVs. Thanks to these advanced 
adaptive learning algorithms, we arrive at overcoming the limitations of existing model-based CACC for 
CAVs, by achieving both theoretically provable performance guarantees and learning-based adaptive 
responsiveness to uncertain and non-stationary environments. To explicitly address energy savings, this 
proposal generalizes previous results on CACC for CAVs by solving an optimal control problem that 
minimizes an integral quadratic constraint on the inter-vehicle distances and control inputs for a string 
of vehicles traveling in close proximity. 

Secondly, instead of considering only purely autonomous vehicles, we have also studied the CACC 
problem for connected vehicles comprised of autonomous vehicles and human-driven vehicles. We have 
developed a learning-based adaptive optimal controller design framework that considers the human-
vehicle interaction and heterogeneous driver behavior, without assuming the precise knowledge of the 
vehicle dynamics or the parameters of the driver model in the platoon. We have generalized our 
previous work in data-driven CACC to the realistic situation where the driver reaction time is not 
negligible and the vehicle nonlinearities are not approximated by linear functions. This is one of the first 
results in learning-based optimal control for mixed-traffic CAVs for tackling problems like the lane 
change and path following subject to human reaction time-delay. Research in this direction is important 
yet technically challenging because the full vehicle model is strongly nonlinear and involves couplings 
between the vehicle dynamics and the tire model as well as between the vehicle lateral dynamics of the 
platoon.  

Last but not least, the adaptive learning control framework has been validated by means of SUMO and 
MATLAB based computer simulations for various driving conditions. 
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Section 1 Learning-Based Adaptive Optimal Control for CVs 

Subsection 1.1 Background and Contribution 

Capitalizing on vehicle-to-vehicle (V2V) communication, such as dedicated short-range communications 
(DSRCs), CACC has been proposed as a longitudinal control strategy for a platoon of autonomous 
vehicles to achieve small headways and to attenuate the disturbance from leading vehicles [1]–[6]. 
However, given the currently low penetration rate of autonomous vehicles, we need to consider a more 
practical situation for the near future, where CAVs share the road with human-driven vehicles (HDVs). In 
addition, several field experiments have demonstrated that HDVs will undermine the performance of 
CACC design if HDVs are not taken into consideration for the control design [7]–[9]. Consequently, the 
control design for a platoon mixed with HDVs and CAVs is required. In [10], such a mixed traffic scenario 
is called connected cruise control, where a CAV receives motional data from its preceding vehicles and 
adjusts its speed while HDVs remain controlled solely by human drivers. In [10], a linear quadratic 
regulator (LQR) is designed to minimize velocity and headway fluctuation in the platoon, assuming that 
the drivers’ feedback gains and reaction time of the adjacent HDVs are homogeneous. Accordingly, a 
classical model-based LQR approach lacks adaptivity and robustness to deal with the heterogeneous 
driver car-following models. To overcome the uncertainties caused by this heterogeneity of state-of-the-
art driver control models, robust control methods have been proposed in the literature, e.g., [11] and 
[12]. Based on the prior knowledge of nominal driver parameters, stability/robustness is ensured by 
these robust controllers. But the transient performance of the platoon is not optimized as an objective 
in the control design. Hence, the optimality and the adaptivity have not been addressed simultaneously 
by these existing model-based methods. Because of these observations, we believe that adaptive 
optimal control (AOC) is more desirable for practical implementation, which can continually handle the 
model uncertainty introduced by the unknown driver-dependent parameters and simultaneously 
optimize the transient performance of the platoon. 

This report adopts ideas from reinforcement learning [13] and adaptive dynamic programming (ADP) 
[14] to develop an intelligent and safe AOC algorithm for CAVs in the mixed traffic scenario. By 
systematic use of control theory, ADP has proven to be a powerful method to learn safe and stable 
controllers by using real-time data collected along the trajectory of the controlled system. One major 
advantage of ADP, as opposed to traditional reinforcement learning [13], lies in the fact that the closed-
loop stability of the dynamic system is established when the learned control policy is implemented. 
Meanwhile, the stability/robustness of the CAV controller characterizes the convergence of the platoon 
toward a desired equilibrium state (headway and velocity). As a result of the closed-loop stability, it 
ensures that the state is bounded around the equilibrium and, thus, the safety can be ensured at all 
times. In [15], an ADP-based control design is proposed for the CAVs under a mixed traffic-flow 
environment. In our prior work [16], we developed a learning-based AOC algorithm to tackle the input-
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delay issue resulting from the vehicle’s engine lags. Nonetheless, the impact of the human driver 
reaction time in the platoon has not been fully investigated. The reaction time constitutes the delays in 
the state of the human–vehicle platooning system, which can notably affect stability and control 
performance and even cause congestion and possibly crashes [17]. Therefore, a learning-based AOC 
algorithm to properly deal with the effect of the human driver reaction delay is advantageous to ensure 
the safety of mixed platoons and the optimal performance of the vehicular network. 

In this report, we model the system of a platoon mixed with multiple connected HDVs and a CAV as a set 
of differential difference equations (DDEs), by taking into account drivers’ heterogeneous feedback 
gains and reaction delays as well as the actuator (engine) delay. (See Fig. 1 for the communication 
topology.) Then, we follow an approximate discretization procedure to rewrite DDEs into a sampled-
data linear system with approximation error. This discretization step transforms the problem of 
controlling DDEs to the control of an augmented linear system without delay and simplifies the control 
design procedure. Next, we incorporate a value-iteration (VI)-based ADP method with sampled-data 
control theory and propose a learning-based AOC design for the CAV without the exact knowledge of 
the human drivers in the platoon. We show the effectiveness of our proposed method through a SUMO-
based simulation [35], which is an open-source microscopic traffic simulation platform. In addition, the 
proposed algorithm is validated using the well-known next-generation simulation (NGSIM) dataset. The 
main contributions of this report are summarized as follows. 

1) The proposed learning-based controller for the CAV can adapt to different platoon dynamics caused 
by heterogeneous driver behavior. 

2) The performance of the controlled platoon is optimized according to a linear quadratic criterion such 
that the velocity and headway fluctuations between vehicles are minimized and abrupt 
accelerations/decelerations that can cause unsafe situations are avoided. 

3) To address safety concerns during real-time data collection, the presented algorithm can employ 
historical data and real-time data at the same time, which aims to speed up the learning process. 

Subsection 1.2 Modeling of Mixed Traffic Flow 

In this section, we briefly introduce the mathematical modeling of car-following behaviors of the HDV 
and the CAV. In our study, a mixed traffic platoon of n HDVs and one CAV is examined, as shown in Fig. 
1. hi is defined as the bumper-to- bumper distance between vehicle i and its preceding vehicle i−1, vi as 
the velocity of vehicle i. With this simplified topology of the communication network, each CAV only 
receives motion data from the preceding connected HDVs. This setting does not cause a loss of 
generality for multiple CAVs, where every platoon can be considered to be separated by a CAV [12]. 
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Figure 1. Platoon of Connected Human-driven and CAVs 

Here, we consider the well-known optimal velocity model (OVM) with reaction delays [18], which is a 
nonlinear system. After linearizing it around the equilibrium, the OVM model can be written as DDEs 

ℎ�̇𝑖𝑖(𝑡𝑡) = 𝑣𝑣�𝑖𝑖−1(𝑡𝑡) − 𝑣𝑣�𝑖𝑖(𝑡𝑡)  

 𝑣𝑣�̇𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖 �𝑁𝑁∗ℎ�𝑖𝑖(𝑡𝑡 − 𝐿𝐿𝑖𝑖) − 𝑣𝑣�(𝑡𝑡 − 𝐿𝐿𝑖𝑖)� + 𝛽𝛽𝑖𝑖�𝑣𝑣�𝑖𝑖−1(𝑡𝑡 − 𝐿𝐿𝑖𝑖) − 𝑣𝑣�𝑖𝑖(𝑡𝑡 − 𝐿𝐿𝑖𝑖)�  

where ℎ�𝑛𝑛+1(𝑡𝑡) =  ℎ𝑛𝑛+1 − ℎ𝑛𝑛+1
∗ , 𝑣𝑣�𝑛𝑛+1(𝑡𝑡) =  𝑣𝑣𝑛𝑛+1 − 𝑣𝑣∗, and u is the designed control input, that is, the 

acceleration of the vehicle n+1 and η ≥ 0 is the input time delay. 

Combining the aforementioned error dynamics, the statespace of the mixed traffic flow can be 

formulated. Suppose, for such a platoon of n + 1 vehicles, there exist p distinct drivers’ reaction delays, 

where p ≤ n. Assuming that there is a fictitious leading vehicle 0 traveling at constant velocity with v0(t) 

≡ v∗, h0(t) ≡ h∗. Then, we focus on the controller design for the CAV in the platoon, whose state space 

representation is as follows: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴0𝑥𝑥(𝑡𝑡) + �𝐴𝐴𝑖𝑖𝑥𝑥(𝑡𝑡 − 𝐿𝐿𝑖𝑖) + 𝐵𝐵𝑢𝑢(𝑡𝑡 − 𝜂𝜂)

𝑝𝑝

𝑖𝑖=1

 

where the state vector 𝑥𝑥(𝑡𝑡)  =  [ℎ�1,𝑣𝑣�1, . . . , ℎ�𝑛𝑛+1,𝑣𝑣�𝑛𝑛+1]𝑇𝑇 ∈  ℝ𝑛𝑛𝑥𝑥 , nx = 2(n+1) and the input vector u ∈ ℝ. 

The designed controller u is only for the CAV at the tail of the platoon, while HDVs are not directly 
controlled in any form. Note that since HDVs are assumed to be stable, that is, each driver of the vehicle 
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can achieve the traffic-flow equilibrium, the whole platooning system (5) is stabilizable in this setting, 
which is equivalent to 

𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 �𝑠𝑠𝑠𝑠 − 𝐴𝐴0 −�𝐴𝐴𝑖𝑖𝑒𝑒−𝑠𝑠𝐿𝐿𝑖𝑖
𝑝𝑝

𝑖𝑖=1

    𝐵𝐵� = 𝑛𝑛𝑥𝑥 

for s ∈ ℂ+. 

Subsection 1.3 Discretization of DDEs 

To achieve a digital implementation, a sampled-data system with sampling interval T is considered. 

Integrating the linear model of the platoon over a sampling interval [kT, kT + T] gives  

 

𝑥𝑥(𝑟𝑟𝑘𝑘 + 𝑘𝑘) = 𝑒𝑒𝐴𝐴0𝑇𝑇𝑥𝑥(𝑟𝑟𝑘𝑘) +� 𝑒𝑒𝐴𝐴0(𝑇𝑇−𝑟𝑟)
𝑇𝑇

0
��𝐴𝐴𝑖𝑖𝑥𝑥(𝑟𝑟𝑘𝑘 + 𝑟𝑟 − 𝐿𝐿𝑖𝑖)

𝑝𝑝

𝑖𝑖=1

�𝑑𝑑𝑟𝑟 + � 𝑒𝑒𝐴𝐴0(𝑇𝑇−𝑟𝑟)
𝑇𝑇

0
(𝐵𝐵𝑢𝑢(𝑟𝑟𝑘𝑘 + 𝑟𝑟 − 𝜂𝜂))𝑑𝑑𝑟𝑟 

Here, we briefly review the procedure of sampling a set of DDEs. First, the drivers’ reaction delays and the 
engine lag can be rewritten into 

𝐿𝐿𝑖𝑖 = (𝑁𝑁𝑖𝑖 − 1 + 𝑟𝑟𝑖𝑖)𝑘𝑘  
𝜂𝜂 = (𝑀𝑀 − 1 + 𝑏𝑏)𝑘𝑘 

where integers Ni ≥ 1, M ≥ 1, and ai ∈ [0, 1), b ∈ [0, 1). Suppose the maximum value of Ni is known as 

Nmax and M is known as well. Then, the system in Figure 1 is discretized based on the following rules: 1) 

during each sampling interval, the delayed control signal u(t−η) is piecewise constant and 2) the delayed 

state variable x(t −Li) is estimated by the interpolation method. Figure 2 illustrates the discretization 

procedure. 
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Figure 2. Interpolation-based Estimation for Delayed State Variables 

The expression of the discretized input u can be expressed as 

𝑢𝑢(𝑟𝑟𝑘𝑘 + 𝑟𝑟 − 𝜂𝜂) = �
𝑢𝑢(𝑟𝑟𝑘𝑘 −𝑀𝑀𝑘𝑘), 𝑖𝑖𝑖𝑖 𝑟𝑟 ∈ [0, 𝑏𝑏𝑘𝑘)

𝑢𝑢(𝑟𝑟𝑘𝑘 −𝑀𝑀𝑘𝑘 + 𝑘𝑘), 𝑖𝑖𝑖𝑖 𝑟𝑟 ∈ [𝑏𝑏𝑘𝑘,𝑘𝑘). 

Similarly, for r ∈ [0, aiT), the interpolated value x�(kT+r−Li) is given by  

 

𝑥𝑥�(𝑟𝑟𝑘𝑘 + 𝑟𝑟 − 𝐿𝐿𝑖𝑖) = �𝑟𝑟𝑖𝑖 −
𝑟𝑟
𝑘𝑘
� 𝑥𝑥(𝑟𝑟𝑘𝑘 − 𝑁𝑁𝑖𝑖𝑘𝑘) + �1 − 𝑟𝑟𝑖𝑖 +

𝑟𝑟
𝑘𝑘
� 𝑥𝑥(𝑟𝑟𝑘𝑘 − 𝑁𝑁𝑖𝑖𝑘𝑘 + 𝑘𝑘) 

and for r ∈ [aiT, T], x� (kT + r − Li) is described by 

𝑥𝑥�(𝑟𝑟𝑘𝑘 + 𝑟𝑟 − 𝐿𝐿𝑖𝑖) = �1 −
𝑟𝑟
𝑘𝑘

+ 𝑟𝑟𝑖𝑖� 𝑥𝑥(𝑟𝑟𝑘𝑘 − 𝑁𝑁𝑖𝑖𝑘𝑘 + 𝑘𝑘) + �
𝑟𝑟
𝑘𝑘
− 𝑟𝑟𝑖𝑖� 𝑥𝑥(𝑟𝑟𝑘𝑘 − 𝑁𝑁𝑖𝑖𝑘𝑘 + 2𝑘𝑘) 

For notational simplicity, we define xk = x(kT) and uk =u(kT) for k ∈ ℤ+. Then according to the 

aforementioned equations, the dynamics of the state x can be expressed as 

𝑥𝑥𝑟𝑟+1 = 𝐹𝐹0𝑥𝑥𝑟𝑟 + 𝐺𝐺𝑀𝑀𝑢𝑢𝑟𝑟−𝑀𝑀 + 𝐺𝐺𝑀𝑀−1𝑢𝑢𝑟𝑟−𝑀𝑀+1 + 𝑤𝑤𝑟𝑟 + �(𝐹𝐹𝑁𝑁𝑖𝑖𝑥𝑥𝑟𝑟−𝑁𝑁𝑖𝑖 + 𝐹𝐹𝑁𝑁𝑖𝑖−1𝑥𝑥𝑟𝑟−𝑁𝑁𝑖𝑖+1 + 𝐹𝐹𝑁𝑁𝑖𝑖−2𝑥𝑥𝑟𝑟−𝑁𝑁𝑖𝑖+2)

𝑝𝑝

𝑖𝑖=1

 

By defining an augmented state z̅𝑟𝑟 = [𝑥𝑥𝑟𝑟
𝑘𝑘, 𝑥𝑥𝑟𝑟−1

𝑘𝑘 , … , 𝑥𝑥𝑟𝑟−𝑁𝑁𝑁𝑁𝑟𝑟𝑥𝑥
𝑘𝑘 , 𝑢𝑢𝑟𝑟

𝑘𝑘, 𝑢𝑢𝑟𝑟−1
𝑘𝑘 , … , 𝑥𝑥𝑟𝑟−𝑀𝑀

𝑘𝑘 ]
𝑘𝑘
∈ ℝ𝑛𝑛𝑧𝑧 , where 𝑛𝑛𝑧𝑧 =

𝑛𝑛𝑥𝑥(𝑁𝑁max +  1)  +  𝑀𝑀. we have the following system representation 

𝑧𝑧�𝑟𝑟+1 = 𝒜𝒜𝑧𝑧�𝑟𝑟 + ℬ𝑢𝑢𝑟𝑟 + 𝒟𝒟𝑤𝑤𝑟𝑟 
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Subsection 1.4 Data-Driven ADP Design 

Subsection 1.4.1 Model-based VI 

In order to attenuate the disturbance for the mixed traffic, and considering the aforementioned 
discretized linear system without the approximation error w, the following LQR problem is formulated 

min𝑢𝑢�(�̅�𝑧𝑟𝑟
𝑘𝑘𝑄𝑄�̅�𝑧𝑟𝑟 + 𝑟𝑟�𝑢𝑢𝑟𝑟2)

∞

𝑟𝑟=0

 

Subject to 𝑧𝑧�𝑟𝑟+1 = 𝒜𝒜𝑧𝑧�𝑟𝑟 + ℬ𝑢𝑢𝑟𝑟. 

If the accurate dynamic model of the platoon is known, we can solve the LQR problem by the following VI 
approach 

𝑃𝑃𝑗𝑗+1 = 𝒜𝒜𝑘𝑘𝑃𝑃𝑗𝑗𝒜𝒜 + 𝑄𝑄 − 𝒜𝒜𝑘𝑘𝑃𝑃𝑗𝑗ℬ(𝑟𝑟� + ℬ𝑘𝑘𝑃𝑃𝑗𝑗ℬ)
−1
ℬ𝑘𝑘𝑃𝑃𝑗𝑗𝒜𝒜 

𝐾𝐾𝑗𝑗+1 = (𝑟𝑟� + ℬ𝑘𝑘𝑃𝑃𝑗𝑗ℬ)
−1
ℬ𝑘𝑘𝑃𝑃𝑗𝑗+1𝒜𝒜 

Subsection 1.4.2 Data-driven VI 

In this section, a data-driven ADP learning algorithm is proposed to solve the optimal control problem 
without accurate knowledge of the human driver’s feedback gains and reaction time. 

First, denote 

𝐻𝐻𝑗𝑗 = �
𝐻𝐻𝑗𝑗

11 𝐻𝐻𝑗𝑗
12

(𝐻𝐻𝑗𝑗
12)

𝑘𝑘
𝐻𝐻𝑗𝑗

22� = �
ℬ𝑘𝑘𝑃𝑃𝑗𝑗ℬ ℬ𝑘𝑘𝑃𝑃𝑗𝑗𝒜𝒜
𝒜𝒜𝑘𝑘𝑃𝑃𝑗𝑗ℬ 𝒜𝒜𝑘𝑘𝑃𝑃𝑗𝑗𝒜𝒜

� 

where j is a non-negative integer and H0 is zero matrix of appropriate dimension. Then, the augmented 
system derived in the previous section can be rewritten into 

𝑧𝑧�𝑟𝑟+1 = 𝒜𝒜𝑗𝑗𝑧𝑧�𝑟𝑟 +  ℬ�𝐾𝐾𝑗𝑗𝑧𝑧�𝑟𝑟 + 𝑢𝑢𝑘𝑘�+ 𝒟𝒟𝑤𝑤𝑘𝑘 

where Αj = Α-ΒKj. Then according to the model based value iteration and the aforementioned equation, 
we have  

When the dynamics is unknown to us, based on ADP technique, we propose a data-driven method to solve 
the aforementioned equations, 
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𝑧𝑧�𝑟𝑟+1
𝑘𝑘 Q𝑧𝑧�𝑟𝑟+1 = −𝑧𝑧�𝑟𝑟+1

𝑘𝑘 ℱ�𝑃𝑃𝑗𝑗�𝑧𝑧�𝑟𝑟+1 +  𝑧𝑧�𝑟𝑟+1
𝑘𝑘 𝑃𝑃𝑗𝑗+1𝑧𝑧�𝑟𝑟+1

= −𝑧𝑧�𝑟𝑟+1
𝑘𝑘 �𝐻𝐻𝑗𝑗22 − (𝐻𝐻𝑗𝑗12)𝑇𝑇�𝑟𝑟 + 𝐻𝐻𝑗𝑗11�

−1𝐻𝐻𝑗𝑗12� 𝑧𝑧�𝑟𝑟+1 + �𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣 ��
𝑢𝑢𝑟𝑟
𝑧𝑧�𝑟𝑟���

𝑘𝑘
𝑣𝑣𝑒𝑒𝑣𝑣𝑠𝑠�𝐻𝐻𝑗𝑗+1� + 𝜉𝜉𝑟𝑟

𝑗𝑗

= −𝜙𝜙𝑟𝑟+1
𝑗𝑗 + ψ𝑟𝑟

𝑘𝑘𝑣𝑣𝑒𝑒𝑣𝑣𝑠𝑠�𝐻𝐻𝑗𝑗+1� + 𝜉𝜉𝑟𝑟
𝑗𝑗  

where  

ℱ�𝑃𝑃𝑗𝑗� = 𝒜𝒜𝑘𝑘𝑃𝑃𝑗𝑗𝒜𝒜−𝒜𝒜𝑘𝑘𝑃𝑃𝑗𝑗ℬ(𝑟𝑟� +ℬ𝑘𝑘𝑃𝑃𝑗𝑗ℬ)
−1
ℬ𝑘𝑘𝑃𝑃𝑗𝑗𝒜𝒜 

𝜙𝜙𝑟𝑟+1
𝑗𝑗 = 𝑧𝑧�𝑟𝑟+1

𝑘𝑘 �𝐻𝐻𝑗𝑗22 − (𝐻𝐻𝑗𝑗12)𝑇𝑇�𝑟𝑟 + 𝐻𝐻𝑗𝑗11�
−1𝐻𝐻𝑗𝑗12� 𝑧𝑧�𝑟𝑟+1 

𝜓𝜓𝑟𝑟 = 𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣 ��
𝑢𝑢𝑟𝑟
𝑧𝑧�𝑟𝑟��. 

Also, we have 𝜉𝜉𝑟𝑟
𝑗𝑗 = 2𝑤𝑤𝑟𝑟

𝑘𝑘𝒟𝒟𝑘𝑘𝑃𝑃𝑗𝑗+1𝒜𝒜𝑧𝑧�𝑟𝑟 + 2𝑤𝑤𝑟𝑟
𝑘𝑘𝒟𝒟𝑘𝑘𝑃𝑃𝑗𝑗+1ℬ𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑟𝑟

𝑘𝑘𝒟𝒟𝑘𝑘𝑃𝑃𝑗𝑗+1𝑤𝑤𝑘𝑘. 

 

In order to determine Hj+1 from (23), measurable data, that is, .z and u, are collected at multiple time 

instants k0 < k1 < · · · < k.s where s̅ is a sufficiently large positive integer. In particular, we can define 

Ψ = [ψ𝑘𝑘0 ,ψ𝑘𝑘1 , … ,ψ𝑘𝑘𝑝𝑝]𝑇𝑇 

Φ𝑗𝑗 = [�̅�𝑧𝑟𝑟0+1
𝑘𝑘 𝑄𝑄𝑧𝑧�𝑟𝑟0+1 + 𝜙𝜙𝑟𝑟0+1

𝑗𝑗 , … , �̅�𝑧𝑟𝑟0+1
𝑘𝑘 𝑄𝑄𝑧𝑧�𝑟𝑟𝑠𝑠+1 + 𝜙𝜙𝑟𝑟𝑠𝑠+1

𝑗𝑗 ]𝑘𝑘 

Then (23) can be expressed in the following matrix form: 

ΨU𝑗𝑗+1 + Ξ𝑗𝑗 = Φ𝑗𝑗, U𝑗𝑗+1 = 𝑣𝑣𝑒𝑒𝑣𝑣𝑠𝑠�H𝑗𝑗+1�, Ξ𝑗𝑗 = [𝜉𝜉𝑟𝑟0

𝑗𝑗 , … , 𝜉𝜉𝑟𝑟𝑠𝑠
𝑗𝑗 ]𝑘𝑘 

Then Uj+1 and Kj+1 can be updated by  

U𝑗𝑗+1 = (Ψ𝑘𝑘Ψ)−1Ψ𝑘𝑘�Φ𝑗𝑗 − Ξ𝑗𝑗�, K𝑗𝑗+1 = �𝑟𝑟 + 𝐻𝐻𝑗𝑗
11�

−1
𝐻𝐻𝑗𝑗

12 

However, the approximation error wk is not measurable in general, which implies that Uj+1 cannot be 
obtained as the aforementioned method, so as Kj+1. Next, an approximate solution is proposed. 

We define the matrix 𝐻𝐻�𝑗𝑗 as the approximate solution to Hj 
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𝐻𝐻�𝑗𝑗 = �
𝐻𝐻�𝑗𝑗

11 𝐻𝐻�𝑗𝑗
12

(𝐻𝐻�𝑗𝑗
12)

𝑘𝑘
𝐻𝐻�𝑗𝑗

22� 

Where 𝐻𝐻�0 = 𝐻𝐻0. Similar to the definition of 𝜙𝜙𝑟𝑟+1
𝑗𝑗 , we construct  

𝜙𝜙�𝑟𝑟+1
𝑗𝑗 = 𝑧𝑧�𝑟𝑟+1

𝑘𝑘 �𝐻𝐻�𝑗𝑗22 − (𝐻𝐻�𝑗𝑗12)𝑇𝑇�𝑟𝑟� + 𝐻𝐻�𝑗𝑗11�
−1𝐻𝐻�𝑗𝑗12� 𝑧𝑧�𝑟𝑟+1 

which defines Φ�𝑗𝑗 = [𝑧𝑧�𝑟𝑟0+1
𝑘𝑘 𝑄𝑄𝑧𝑧�𝑟𝑟0+1 + 𝜙𝜙�𝑟𝑟0+1

𝑗𝑗 , … , 𝑧𝑧�𝑟𝑟𝑠𝑠+1
𝑘𝑘 𝑄𝑄𝑧𝑧�𝑟𝑟𝑠𝑠+1 + 𝜙𝜙�𝑟𝑟𝑠𝑠+1

𝑗𝑗 ]
𝑘𝑘

, with Φ�0 = Φ0. Furthermore, let 

the approximate solution𝑈𝑈�𝑗𝑗 = vecs(𝐻𝐻�𝑗𝑗), which is solved by 

U�𝑗𝑗+1 = (Ψ𝑘𝑘Ψ)−1Ψ𝑘𝑘Φ�𝑗𝑗, 

Then, the controller can be updated by the approximated solution 𝑈𝑈�𝑗𝑗 

K𝑗𝑗+1 = ��̅�𝑟 + 𝐻𝐻�𝑗𝑗
11�

−1
𝐻𝐻�𝑗𝑗

12. 

Algorithm 1 shows the detailed VI-Based ADP algorithm.  

Algorithm 1. VI-Based ADP Algorithm 

Begin  

1. Select a sufficiently small threshold 𝜂𝜂ℎ > 0. 𝐻𝐻0 ← 0. 
2. Apply an initial controller, e.g. adaptive cruise controller with exploration noise on the time 

interval [𝑟𝑟0,𝑟𝑟𝑠𝑠̅] to collect real time data. Compute Φ�0 and Ψ. Let 𝑗𝑗 ← 0. 
3. while the rank condition is NOT satisfied 
4. Draw an experience 𝑒𝑒 from historical data set ℋ, and insert it into Φ�0 and Ψ; 
5. end while 
6. repeat 
7. Determine 𝐻𝐻�𝑗𝑗+1 and 𝐾𝐾�𝑗𝑗+1. 
8.  𝑗𝑗 ← 𝑗𝑗 + 1; 
9. until �𝐻𝐻�𝑗𝑗 − 𝐻𝐻�𝑗𝑗−1� < 𝜂𝜂ℎ 
10. 𝑗𝑗∗ ← 𝑗𝑗 
11. Update controller 𝑢𝑢𝑘𝑘 = −𝐾𝐾�𝑗𝑗∗𝑧𝑧�̅�𝑘. 
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Subsection 1.5 Validation Using Sumo Simulations and NGSIM Data 

In this section, we first present the simulation results using SUMO to demonstrate the efficacy of the 
proposed data-driven ADP method. Here, the sampling period is set as T = 0.2 [s].  

The platoon consists of three HDV followed by a CAV. The weighting matrices are set as Q = 10−2𝑠𝑠 and 

𝑟𝑟� = 1. The initial control policies for the CAV are adaptive cruise control, which does not employ the data 
exchange from the HDVs. We collect the real-time data from 0 [s] to 10 [s], which generates 50 data points, 
and then obtain the rest from the historical data points. At 10 [s], the controller is updated following the 
proposed algorithm (Algorithm 1). The time trajectories of the platooning vehicles are depicted in Fig. 3. 
The convergence results of the algorithm are shown in Fig. 3(b). As analyzed in Theorems 1 and 2, the 
difference between the learned controller and the optimal one is affected by the quality of the data, 
including the sampling interval. It is observed that after 400 iterations the differences are close to zero. 
The computation time of the proposed algorithm for all iterations in this simulation is 2.2 [s] using Intel 
Core i7- 4720HQ CPU 2.60 GHz and 16.0-GB memory. 

Robustness Evaluation Compared with the Model-Based Approach: We compare our proposed learning-
based control algorithm with a model-based optimal control design method, that is, LQR, where the 
design is based on the nominal driver-dependent parameters. As a result, the mismatch between the 
nominal and the actual values of the driver-dependent parameters causes the nonoptimal performance 
of the model-based control design method. In the simulation, the velocity of the fictitious leading vehicle 

0 follows 𝑣𝑣0(𝑡𝑡) = 𝑣𝑣∗ + 4sin (𝑡𝑡). We implement our learning-based controller and the model-based 
design for the CAV. The result is shown in Figure 4, where the ADP-based controller produces smaller 
magnitude of oscillation in terms of velocity and headway. As a consequence, the learning-based design 
can lead to a better disturbance attenuation performance compared to the model-based optimal control 
design. 

 

Figure 3. Time Trajectories of the Four-vehicle Platooning System. (a) Speed and Spacing 
Trajectory of Vehicles #1–#4. (b) Convergence Results of the Proposed Algorithm 
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In addition, the energy efficiency improvement is computed for the CAVs’ trajectories in Figure 4, where 
the net energy is defined as 

𝐸𝐸𝑤𝑤 = � 𝐹𝐹𝑤𝑤(𝑡𝑡)𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖

0
 

where tractive or braking force at the wheels Fw(t) = ma(t)+ mgCr +(1/2)ρaAfCDv2(t), m is the mass of 

the vehicle, Cr is the coefficient of rolling resistance, ρa is the air density, Af is vehicle front area, CD is the 
aerodynamic drag coefficient, and g is the gravitational acceleration. a(t) and v(t) are the acceleration 

and the velocity of the CAV, respectively.It shows that the ADP-based control algorithm can reduce the 
total energy consumption by 7.12%, compared to the model-based optimal control design using the 
homogeneous nominal driver-dependent parameters. 

 

Figure 4. Speed and Spacing Trajectory of the CAV using the Proposed ADP-based Controller 
and the Model-based Optimal Controller 

 

Figure 5. Time Trajectories of a Five-vehicle Platoon in NGSIM. (a) Space–time and Velocity 
Profile of all Vehicles. (b) Velocity Profile of Vehicle 1166 and the CAV 
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Then, we validate our proposed ADP algorithm using the vehicle trajectories from the NGSIM dataset. In 
particular, The U.S. Highway 101 (US 101) dataset is adopted, and the investigated lane is lane 4 in the 
five mainline lanes. The platoon trajectories of vehicles 1469, 1482, 1481, 1157, and 1166 are collected 
and the detailed illustration is shown in Figure 5(a). In the simulation, the vehicle 1166 (black dotted line) 
is replaced by a CAV equipped with our ADP controller and starts with the same initial condition as shown 
by the blue dotted line in Fig. 5(a). When the platoon is formed, we note that the CAV can safely keep a 
smaller steady-state headway (60 [m]) with respect to its immediately preceding vehicle, compared to the 
one between vehicles 1166 and 1157 This can potentially increase the traffic throughput. In addition, the 
velocity profile of the CAV is smoother than the one of vehicle 1166, which can lead to more passenger 
comfort and better energy efficiency.  

Subsection 1.6 Conclusion 

In this article, we have studied a general learning-based AOC problem for a platoon mixed with a CAV and 
multiple HDVs (equipped with V2V communication technology) subjected to heterogeneous drivers’ 
behavior. By integrating the sampled-data control theory and an ADP method, an approximate optimal 
controller is designed for the CAV at the tail of the platoon, using a data-driven approach and without the 
exact knowledge of the driver behavior model in the platoon. The novel reinforcement-learning-based 
control method employs both the historical data and the data collected in real time, due to the off-policy 
property of our proposed ADP algorithm. This significantly reduces learning duration and thus provides 
additional safety improvements. We have validated our proposed approach through SUMO simulations 
and the NGSIM dataset. 

In this study, the range policy in the OVM is assumed to be homogeneous for drivers in the platoon. We 
aim to relax the assumption in our future work. In addition, our future work will also include the AOC of 
connected vehicles for improved safety performance, energy efficiency, and more complex maneuvers, 
such as lane changing. The AOC design with different communication topologies of CAVs will be 
considered as well as highly nonlinear vehicle models. 
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Section 2. Combined Longitudinal and Lateral Control of AVs based on 
Reinforcement Learning 

Subsection 2.1 Background and Contribution 

The increase in the number of vehicles challenges the capability of the existing transportation 
infrastructure. To solve the congestion and safety problems caused by increased transportation demands, 
one way is to optimize the transportation infrastructure, including the highway design and traffic signals. 
The other way is to reduce the distance between vehicles to increase road capability. ACC is developed to 
reduce the inter-vehicle distance with the feedback of the inter-vehicle distance and the relative velocity. 
Then with the V2V, ACC is extended to CACC, which can not only reduce the distance between vehicles 
but also attenuate the disturbance along the platoon [19]. For ACC and CACC, most existing methods 
emphasis on the longitudinal control of autonomous vehicles, which assumes that the vehicles move along 
a straight road. However, in many cases, roads are curved. In this case, vehicles should not only maintain 
a desired inter-vehicle distance, but also stay in lane. Therefore, combined longitudinal and lateral control 
of autonomous vehicles is a significant research topic. 

To achieve the combined longitudinal and lateral control for autonomous vehicles, one method is to 
decompose it into two independent subsystems: longitudinal subsystem and lateral subsystem [20]. For 
longitudinal control, ACC or CACC can be applied. For instance, in [21], the authors propose a data-driven 
adaptive optimal control approach to solve the CACC problem considering the input delay and the 
disturbance. For lateral control, a lane keeping controller design method should be applied. For instance, 
in [22], camera is applied to detect the lane and a data-driven optimal control approach is proposed to 
achieve the lateral control. Ploeg [23] propose a look-ahead approach to follow the preceding vehicle. 
However, cutting corner phenomenon will happen when the following vehicle follows the preceding 
vehicle directly. To overcome the cutting-corner limitation, an extended look-ahead approach is proposed 
in [24]. However, when considering the nonlinear dynamics of the vehicle, the physical parameters, 
especially the tire cornering stiffness, are hard to measure. Besides, in these methods, the performance 
of the designed controller cannot be guaranteed optimal.  

ADP is an effective data-driven approach to find the optimal controller without requiring the precise 
knowledge of the system dynamics. ADP is developed based on the dynamic programming and 
reinforcement learning. The data along the trajectories of the control system, including the states and the 
control inputs, are collected, and then these data are applied iteratively to find the optimal controller. It 
is theoretically shown that at each iteration a sub-optimal controller with improved performance can be 
obtained, and with the iteration of the learning algorithm, these obtained sub-optimal controllers can 
converge to the optimal one. Guaranteed stability with learning-based controllers for the closed-loop 
system is an advantage of ADP over traditional reinforcement learning algorithm. Therefore, ADP attracts 
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considerable attention in the transportation field of which safety is a top priority to be considered. For 
instance, some researchers propose an ADP-based CACC for an exclusive bus line. Some presented an 
ADP-based control strategy to achieve lateral stability of the autonomous vehicle. Someone proposed a 
shared framework of the driver and the autonomous vehicle to achieve lateral control. In these papers, 
ADP is applied to linear systems. However, for the combined longitudinal and lateral control of the 
autonomous vehicle, the vehicle dynamics is nonlinear. Clearly, using a linearized model can only 
guarantee the local stability of the closed-loop system. 

In this report, to solve the data-driven combined longitudinal and lateral optimal control problem, 
considering the nonlinear dynamics of the vehicle, the ADP based output regulation approach [25] is 
adopted. Firstly, the nonlinear dynamics of the following vehicle is established. Based on the extended 
look-ahead approach [24] and the dynamics of the following vehicle, the error states of the system are 
defined, and the dynamics of the corresponding error system is derived. Then, based on the dynamics of 
the error system, the HJB equation is applied to solve the corresponding optimal control problem and a 
model-based policy iteration algorithm is proposed to solve the HJB equation. Finally, based on the ADP 
approach, a two-phase data-driven policy iteration algorithm is proposed. The first phase is to obtain the 
desired driving inputs when the error states are zero by solving the corresponding regulator equation. The 
second phase is to iteratively solve the HJB equation by the collected data. 

In this report, to solve the data-driven combined longitudinal and lateral optimal control problem, 
considering the nonlinear dynamics of the vehicle, the ADP based output regulation approach is adopted. 
Firstly, the nonlinear dynamics of the following vehicle is established. Based on the extended look-ahead 
approach and the dynamics of the following vehicle, the error states of the system are defined and the 
dynamics of the corresponding error system is derived. Then, based on the dynamics of the error system, 
the HJB equation is applied to solve the corresponding optimal control problem and a model based policy 
iteration algorithm is proposed to solve the HJB equation. Finally, based on the ADP approach, a two-
phase data-driven policy iteration algorithm is proposed. The first phase is to obtain the desired driving 
inputs when the error states are zero by solving the corresponding regulator equation. The second phase 
is to iteratively solve the HJB equation by the collected data. Compared with previous works of others, 
this paper proposes a data-driven solution to the combined longitudinal and lateral control when the 
nonlinear dynamics of the following vehicle is considered. In particular, using reinforcement learning 
techniques, an optimal controller is learned from real-time data without assuming the precise knowledge 
of the vehicle model. 
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Subsection 2.2 Dynamic Modelling 

 

Figure 6. The Leading and the Following Vehicle 

Let 𝑋𝑋𝐿𝐿 = [𝑥𝑥𝐿𝐿 , 𝑦𝑦𝐿𝐿, 𝜑𝜑𝐿𝐿 , 𝑉𝑉𝐿𝐿 ,𝜔𝜔𝐿𝐿]𝑘𝑘 denote the state of the leading vehicle, The kinematics of the leading vehicle 
can be expressed as 

ẋ𝐿𝐿 = 𝑉𝑉𝐿𝐿 cos𝜑𝜑𝐿𝐿, ẏ𝐿𝐿 = 𝑉𝑉𝐿𝐿 sin𝜑𝜑𝐿𝐿 

�̇�𝜑𝐿𝐿 = 𝜔𝜔𝐿𝐿, �̇�𝑉𝐿𝐿 = 𝑟𝑟𝐿𝐿, �̇�𝜔𝐿𝐿 = Ω𝐿𝐿 

Therefore, ẊL =  f𝐿𝐿(X𝐿𝐿;ψ). Then the problem solved in this section can be formulated as: In the absence 
of the precise knowledge of the vehicle dynamics (F), calculate an optimal controller which can regulate 
the signal of the motor installed at each wheel of the following vehicle, such that the vehicle F can keep a 
desired distance from the vehicle L and move along the path. 

Let x, y, and φ denote the position and yaw angle of the vehicle F. Vx, Vy and w denote the longitudinal, 
lateral and yaw angular velocity of the vehicle F. Then according to the kinematics of the vehicle F, one 
can obtain the following equation 

�̇�𝑥 = 𝑉𝑉𝑥𝑥 cos𝜑𝜑 − 𝑉𝑉𝑦𝑦 sin𝜑𝜑 
�̇�𝑦 = 𝑉𝑉𝑥𝑥 sin𝜑𝜑 + 𝑉𝑉𝑦𝑦 cos𝜑𝜑 

�̇�𝜑 = 𝜔𝜔 

Figure 7 shows the dynamic model of the following vehicle. Considering the tire model, the dynamics of 
the following vehicle can be expressed as  
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�̇�𝑉𝑥𝑥 = 𝑉𝑉𝑦𝑦𝜔𝜔 −
𝐶𝐶𝑟𝑟
𝑀𝑀
𝑉𝑉𝑥𝑥2 +

2𝑟𝑟
𝑀𝑀
𝑢𝑢1 +

2𝑟𝑟
𝑀𝑀
𝑢𝑢3 

�̇�𝑉𝑦𝑦 = −𝑉𝑉𝑥𝑥𝜔𝜔 −
𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟
𝑀𝑀

𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

+
𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟 − 𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖

𝑀𝑀
𝜔𝜔
𝑉𝑉𝑥𝑥

+
𝐶𝐶𝑖𝑖
𝑀𝑀
𝑢𝑢2 

�̇�𝜔 =
𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟 − 𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖

𝑀𝑀
𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

−
𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟

2 + 𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖
2

𝑠𝑠𝑧𝑧

𝜔𝜔
𝑉𝑉𝑥𝑥

−
2𝑙𝑙𝑠𝑠𝑟𝑟
𝑠𝑠𝑧𝑧

𝑢𝑢1 +
𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖
𝑠𝑠𝑧𝑧

𝑢𝑢2 +
2𝑙𝑙𝑠𝑠𝑟𝑟
𝑠𝑠𝑧𝑧

𝑢𝑢3 

Therefore  

�̇�𝑋𝑉𝑉 = [�̇�𝑉𝑥𝑥, �̇�𝑉𝑦𝑦, �̇�𝜔]𝑘𝑘 = 𝑖𝑖(𝑋𝑋𝑉𝑉) + 𝑔𝑔𝑢𝑢 

where u = [u1,u2,u3]. 

In Fig.6, d denotes a constant look-ahead distance. H is the look-ahead point and it is in the direction of V. 

If the vehicle F follows the vehicle L directly, it will cut the corner of the path. In order to avoid the cutting-
corner problem, a virtual point S is defined which is in the direction of OL, and the vehicle F follows the 
virtual point S instead of L. ES=d is a tangent to the path. Therefore, in order to follow the vehicle L and 
move along the path, the desired position of vehicle F is E, and if this happens, S coincides with H. 
Therefore, OES forms a right triangle, and s = LS is determined by 

s = �
0, 𝜅𝜅 = 0

−1 + √1 + 𝜅𝜅2𝑑𝑑2

𝜅𝜅
, 𝜅𝜅 ≠ 0

 

γ can be determined by 

γ = tan−1 𝜅𝜅𝑑𝑑 

The position of the virtual point is 

S = �
𝑥𝑥𝐿𝐿
𝑦𝑦𝐿𝐿� + 𝑠𝑠 � sin𝜑𝜑𝐿𝐿

− cos𝜑𝜑𝐿𝐿
� = �

𝑥𝑥𝐿𝐿
𝑦𝑦𝐿𝐿� + �

𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦� 

In order to let H converge to S, according to Fig. 6, the following variables are defined. 

𝑒𝑒1 = 𝑥𝑥𝐿𝐿 + 𝑠𝑠𝑥𝑥 − 𝑥𝑥 − 𝑑𝑑 cos𝜑𝜑 
𝑒𝑒2 = 𝑦𝑦𝐿𝐿 + 𝑠𝑠𝑦𝑦 − 𝑦𝑦 − 𝑑𝑑 sin𝜑𝜑 

𝑒𝑒3 = 𝜑𝜑𝐿𝐿 − (𝜑𝜑 + 𝛾𝛾) 
𝑒𝑒4 = 𝑉𝑉𝐿𝐿 − 𝑉𝑉𝑥𝑥 
𝑒𝑒5 = −𝑉𝑉𝑦𝑦 

𝑒𝑒6 = 𝜔𝜔𝐿𝐿 − 𝜔𝜔 
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Besides, the following variables are defined. 

𝑧𝑧1 = cos(𝜑𝜑 + 𝛾𝛾)𝑒𝑒1 + sin(𝜑𝜑 + 𝛾𝛾)𝑒𝑒2 

𝑧𝑧2 = − sin(𝜑𝜑 + 𝛾𝛾)𝑒𝑒1 + cos(𝜑𝜑 + 𝛾𝛾)𝑒𝑒2 

Then the error states of the system are e = [𝑧𝑧1, 𝑧𝑧2, e3, … , e6]𝑇𝑇. The error dynamics can be expressed as 

�̇�𝑒 = 𝑖𝑖𝑒𝑒(𝜅𝜅,𝑋𝑋𝐿𝐿, 𝑒𝑒) + 𝑔𝑔𝑒𝑒𝑢𝑢𝑒𝑒 

where  

𝑖𝑖𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑧𝑧2𝜔𝜔 + (𝑉𝑉𝐿𝐿 + 𝑠𝑠𝜔𝜔𝐿𝐿) cos 𝑒𝑒3 − 𝑉𝑉𝑥𝑥 cos 𝛾𝛾 − (𝑉𝑉𝑦𝑦 + 𝑑𝑑𝜔𝜔) sin 𝛾𝛾
−𝑧𝑧1𝜔𝜔 + (𝑉𝑉𝐿𝐿 + 𝑠𝑠𝜔𝜔𝐿𝐿) sin 𝑒𝑒3 + 𝑉𝑉𝑥𝑥 sin 𝛾𝛾 − (𝑉𝑉𝑦𝑦 + 𝑑𝑑𝜔𝜔) cos 𝛾𝛾

𝑒𝑒6

−𝑉𝑉𝑦𝑦𝜔𝜔 +
𝐶𝐶𝑟𝑟
𝑀𝑀

(𝑉𝑉𝑥𝑥2 − 𝑉𝑉𝐿𝐿2)

𝑉𝑉𝑥𝑥𝜔𝜔 − 𝑉𝑉𝐿𝐿𝜔𝜔𝐿𝐿 +
𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟
𝑀𝑀

𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

+
𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖

2 + 𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟
2

𝑠𝑠𝑧𝑧
(
𝜔𝜔
𝑉𝑉𝑥𝑥

−
𝜔𝜔𝐿𝐿

𝑉𝑉𝐿𝐿
)

−
𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟 − 𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖

𝑠𝑠𝑧𝑧

𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

+
𝐶𝐶𝑖𝑖𝑙𝑙𝑖𝑖

2 + 𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟
2

𝑠𝑠𝑧𝑧
(
𝜔𝜔
𝑉𝑉𝑥𝑥

−
𝜔𝜔𝐿𝐿

𝑉𝑉𝐿𝐿
)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑔𝑔𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

03×3

−
2𝑟𝑟
𝑀𝑀

0 −
2𝑟𝑟
𝑀𝑀

0 −
𝐶𝐶𝑖𝑖
𝑀𝑀

0

2𝑙𝑙𝑠𝑠𝑟𝑟
𝑠𝑠𝑧𝑧

−
2𝑙𝑙𝑖𝑖𝐶𝐶𝑖𝑖
𝑠𝑠𝑧𝑧

−
2𝑙𝑙𝑠𝑠𝑟𝑟
𝑠𝑠𝑧𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Figure 7. The Dynamic Model of the Following Vehicle 

In the aforementioned error system, 𝑢𝑢𝑒𝑒 = 𝑢𝑢 − 𝑢𝑢𝑑𝑑 and 𝑢𝑢𝑑𝑑 is the solution to the following regulator 
equation 

[𝑟𝑟𝐿𝐿 , 0,Ω𝐿𝐿]𝑇𝑇 − 𝑖𝑖(𝑉𝑉𝐿𝐿, 0,ω𝐿𝐿) − 𝑔𝑔𝑢𝑢𝑑𝑑 = 0 

Subsection 2.3 Two-phase Data-driven Policy Iteration 

Subsection 2.3.1 Model-based Policy Iteration 

In this section, to reduce the error states and the energy consumption, the cost criterion is defined as 

J(κ,ψ0, X𝐿𝐿0, 𝑒𝑒0,𝑢𝑢𝑒𝑒) = � 𝑒𝑒𝑇𝑇𝑄𝑄𝑒𝑒 + 𝑢𝑢𝑒𝑒𝑇𝑇𝑅𝑅𝑢𝑢𝑒𝑒
∞

0
 

where the weighting matrices 𝑄𝑄 and 𝑅𝑅 are positive definite. The HJB equation for the corresponding optimal 

control problem can be expressed as 

𝜕𝜕𝑉𝑉∗𝑘𝑘

𝜕𝜕𝜓𝜓
E𝜓𝜓 +

𝜕𝜕𝑉𝑉∗𝑘𝑘

𝜕𝜕𝑋𝑋𝐿𝐿
𝑖𝑖𝐿𝐿 +

𝜕𝜕𝑉𝑉∗𝑘𝑘

𝜕𝜕𝑋𝑋𝐿𝐿
𝑖𝑖𝑒𝑒 −

1
4

(
𝜕𝜕𝑉𝑉∗𝑘𝑘

𝜕𝜕𝑒𝑒
𝑔𝑔𝑒𝑒)𝑅𝑅−1(

𝜕𝜕𝑉𝑉∗𝑘𝑘

𝜕𝜕𝑒𝑒
𝑔𝑔𝑒𝑒)𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 = 0 

where 𝑉𝑉∗(𝜅𝜅,𝜓𝜓,𝑋𝑋𝐿𝐿, 𝑒𝑒) is the value function. The optimal controller is  

𝑢𝑢𝑒𝑒∗ = −
1
2
𝑅𝑅−1𝑔𝑔𝑒𝑒

𝑘𝑘 𝜕𝜕𝑉𝑉
∗

𝜕𝜕𝑒𝑒
 

Here, a model-based policy iteration algorithm is proposed to minimize the aforementioned cost 
criterion, 

𝜕𝜕𝑉𝑉𝑖𝑖𝑘𝑘

𝜕𝜕𝜓𝜓
E𝜓𝜓 +

𝜕𝜕𝑉𝑉𝑖𝑖𝑘𝑘

𝜕𝜕𝑋𝑋𝐿𝐿
𝑖𝑖𝐿𝐿 +

𝜕𝜕𝑉𝑉𝑖𝑖𝑘𝑘

𝜕𝜕𝑋𝑋𝐿𝐿
�𝑖𝑖𝑒𝑒 + 𝑔𝑔𝑒𝑒𝑢𝑢𝑒𝑒,𝑖𝑖� + 𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 + 𝑢𝑢𝑒𝑒,𝑖𝑖

𝑘𝑘 𝑅𝑅𝑢𝑢𝑒𝑒,𝑖𝑖 = 0 

𝑢𝑢𝑒𝑒,𝑖𝑖+1 = −
1
2
𝑅𝑅−1𝑔𝑔𝑒𝑒

𝑘𝑘 𝜕𝜕𝑉𝑉𝑖𝑖
𝜕𝜕𝑒𝑒

 

At each iteration, we can obtain an improved controller 𝑢𝑢𝑒𝑒,𝑖𝑖+1 and it converges to the optimal controller.  

Subsection 2.3.2 Data-driven Policy Iteration 

According to the previous sections, to obtain the optimal controller𝑢𝑢∗ = 𝑢𝑢𝑒𝑒∗ + 𝑢𝑢𝑑𝑑, the regulator equation 
should be solved. Besides, when calculating the model-based policy iteration, the dynamic information of 
the system is required. However, it is laborious to establish an accurate dynamic model in practice. In 
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addition, even if the dynamics of the vehicle is given, solving model-based policy iteration is still nontrivial. 

In this section, to obtain 𝑢𝑢∗ without knowing the dynamics of the following vehicle F, a two-phase data-
driven policy iteration algorithm is developed. The first phase is to solve the regulator equation, and the 
second phase is to solve the HJB equation with the collected data of the system based on the policy 
iteration.  

The first phase of the data-driven policy iteration is to solve the regulator equation. To solve the regulator 
equation, the key to the problem is to find the approximations of f and g. In (4), f is a nonlinear function 

and g is a constant matrix. According to the approximation theory, f can by approximated by f̂ =

∑ 𝜎𝜎�𝑗𝑗
𝑁𝑁𝑖𝑖
𝑗𝑗=1 𝜙𝜙𝑗𝑗

𝑖𝑖(𝑋𝑋𝑉𝑉), where 𝜎𝜎�𝑗𝑗 ∈ ℝ3 and {𝜙𝜙𝑗𝑗
𝑖𝑖(𝑋𝑋𝑉𝑉)}

𝑗𝑗=1

∞
 are linearly independent basis functions. g� ∈ ℝ3×3 

approximates g. Therefore, according to the dynamics of the following vehicle, we have 

1
2
𝑋𝑋𝑉𝑉𝑘𝑘𝑋𝑋𝑉𝑉|𝑡𝑡𝑟𝑟

𝑡𝑡𝑟𝑟+1 = � 𝑋𝑋𝑉𝑉𝑘𝑘[𝑖𝑖�(𝑋𝑋𝑉𝑉) + 𝑔𝑔�𝑢𝑢]𝑑𝑑𝑑𝑑
𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
+ ε𝑟𝑟 

Then, the approximation error can be written as 

 

ε𝑟𝑟 =
1
2
𝑋𝑋𝑉𝑉𝑘𝑘𝑋𝑋𝑉𝑉|𝑡𝑡𝑟𝑟

𝑡𝑡𝑟𝑟+1 −� 𝑋𝑋𝑉𝑉𝑘𝑘[𝑖𝑖�(𝑋𝑋𝑉𝑉) + 𝑔𝑔�𝑢𝑢]𝑑𝑑𝑑𝑑
𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
=

1
2
𝑋𝑋𝑉𝑉𝑘𝑘𝑋𝑋𝑉𝑉|𝑡𝑡𝑟𝑟

𝑡𝑡𝑟𝑟+1 −� 𝑋𝑋𝑉𝑉𝑘𝑘�𝜎𝜎�Φ𝑖𝑖(𝑋𝑋𝑉𝑉) + 𝑔𝑔�𝑢𝑢�𝑑𝑑𝑑𝑑
𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟

=
1
2
𝑋𝑋𝑉𝑉𝑘𝑘𝑋𝑋𝑉𝑉|𝑡𝑡𝑟𝑟

𝑡𝑡𝑟𝑟+1 −� Φ𝑖𝑖𝑘𝑘(𝑋𝑋𝑉𝑉)⨂𝑋𝑋𝑉𝑉𝑘𝑘𝑑𝑑𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣(𝜎𝜎�)
𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
− � 𝑢𝑢𝑘𝑘⨂𝑋𝑋𝑉𝑉

𝑘𝑘𝑑𝑑𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣(𝑔𝑔�)
𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
 

where 𝜎𝜎� = [𝜎𝜎�1, … , 𝜎𝜎�𝑁𝑁𝑖𝑖] and Φ𝑖𝑖 = [𝜙𝜙1
𝑖𝑖

, … ,𝜙𝜙𝑁𝑁𝑖𝑖
𝑖𝑖 ]. Define ε = [ε1, … , ε𝑙𝑙ε]. Then  

ε = Ξ𝜀𝜀 − Λ𝜀𝜀[𝑣𝑣𝑒𝑒𝑣𝑣𝑇𝑇(𝜎𝜎�),𝑣𝑣𝑒𝑒𝑣𝑣𝑇𝑇(𝑔𝑔�)]𝑇𝑇 

where 

Ξ𝜀𝜀 = [
1
2
𝑋𝑋𝑉𝑉𝑘𝑘𝑋𝑋𝑉𝑉|𝑡𝑡1

𝑡𝑡2, … ,
1
2
𝑋𝑋𝑉𝑉𝑘𝑘𝑋𝑋𝑉𝑉|𝑡𝑡𝑙𝑙

𝑡𝑡𝑙𝑙+1]𝑘𝑘 

Λ𝜀𝜀 =

⎣
⎢
⎢
⎢
⎡ � Φ𝑖𝑖𝑘𝑘(𝑋𝑋𝑉𝑉)⨂𝑋𝑋𝑉𝑉𝑘𝑘𝑑𝑑𝑑𝑑

𝑡𝑡2

𝑡𝑡1

� 𝑢𝑢𝑘𝑘⨂𝑋𝑋𝑉𝑉
𝑘𝑘𝑑𝑑𝑑𝑑

𝑡𝑡2

𝑡𝑡1… …

� Φ𝑖𝑖𝑘𝑘(𝑋𝑋𝑉𝑉)⨂𝑋𝑋𝑉𝑉𝑘𝑘𝑑𝑑𝑑𝑑
𝑡𝑡𝑙𝑙+1

𝑡𝑡𝑙𝑙
� 𝑢𝑢𝑘𝑘⨂𝑋𝑋𝑉𝑉

𝑘𝑘𝑑𝑑𝑑𝑑
𝑡𝑡𝑙𝑙+1

𝑡𝑡𝑙𝑙 ⎦
⎥
⎥
⎥
⎤

 

Then f̂ and g� can be approximated by 
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[𝑣𝑣𝑒𝑒𝑣𝑣𝑇𝑇(𝜎𝜎�), 𝑣𝑣𝑒𝑒𝑣𝑣𝑇𝑇(𝑔𝑔�)]𝑇𝑇 = (Λ𝜀𝜀𝑇𝑇Λ𝜀𝜀)−1Λ𝜀𝜀𝑇𝑇Ξ𝜀𝜀 

where both Λ𝜀𝜀 and Ξ𝜀𝜀 can be constructed by the data collected along the trajectory of the system. The 
regulator equation can be solved by 

𝑢𝑢𝑑𝑑 = 𝑔𝑔�−1([𝑟𝑟𝐿𝐿, 0,Ω𝐿𝐿]𝑘𝑘 − 𝑖𝑖�(𝑉𝑉𝐿𝐿, 0,ω𝐿𝐿)) 

Once the regulator equation (11) is solved with the data from the system, ud can be obtained, and 
consequently, HJB equation can be solved by the policy iteration approach. Define  

υ𝑖𝑖 = 𝑢𝑢 − 𝑢𝑢𝑑𝑑 − 𝑢𝑢𝑒𝑒,𝑖𝑖 

then the error system can be rewritten as 

�̇�𝑒 = 𝑖𝑖𝑒𝑒(𝜅𝜅,𝜓𝜓,𝑋𝑋𝐿𝐿, 𝑒𝑒) + 𝑔𝑔𝑒𝑒𝑢𝑢𝑒𝑒,𝑖𝑖 + 𝑔𝑔𝑒𝑒υ𝑖𝑖 

 

Then along the trajectory generated by the aforementioned equation, with the driving input u, the 
derivative of Vi can be expressed as 

�̇�𝑉𝑖𝑖 =
𝜕𝜕𝑉𝑉𝑖𝑖𝑘𝑘

𝜕𝜕𝜓𝜓
E𝜓𝜓 +

𝜕𝜕𝑉𝑉𝑖𝑖𝑘𝑘

𝜕𝜕𝑋𝑋𝐿𝐿
𝑖𝑖𝐿𝐿 +

𝜕𝜕𝑉𝑉𝑖𝑖𝑘𝑘

𝜕𝜕𝑒𝑒
�𝑖𝑖𝑒𝑒 + 𝑔𝑔𝑒𝑒𝑢𝑢𝑒𝑒,𝑖𝑖 + 𝑔𝑔𝑒𝑒υ𝑖𝑖� 

Then with the model-based policy iteration, the following equation can be obtained  

�̇�𝑉𝑖𝑖 = −𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 − 𝑢𝑢𝑢𝑢𝑒𝑒,𝑖𝑖
𝑘𝑘 𝑅𝑅𝑢𝑢𝑒𝑒,𝑖𝑖 + 𝜕𝜕𝑉𝑉𝑖𝑖

𝑘𝑘

𝜕𝜕𝑒𝑒
𝑔𝑔𝑒𝑒υ𝑖𝑖 = −𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 − 𝑢𝑢𝑢𝑢𝑒𝑒,𝑖𝑖

𝑘𝑘 𝑅𝑅𝑢𝑢𝑒𝑒,𝑖𝑖 − 2𝑢𝑢𝑢𝑢𝑒𝑒,𝑖𝑖+1
𝑘𝑘 υ𝑖𝑖. 

Therefore,  

V𝑖𝑖(𝑡𝑡𝑟𝑟+1) − V𝑖𝑖(𝑡𝑡𝑟𝑟) + 2� 𝑢𝑢𝑢𝑢𝑒𝑒,𝑖𝑖+1
𝑘𝑘 𝑅𝑅

𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
υ�𝑖𝑖𝑑𝑑𝑑𝑑 = � −𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 − 𝑢𝑢𝑢𝑢𝑒𝑒,𝑖𝑖

𝑘𝑘 𝑅𝑅𝑢𝑢𝑒𝑒,𝑖𝑖

𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
𝑑𝑑𝑑𝑑 + Δ𝑖𝑖,𝑟𝑟 

υ�𝑖𝑖 = 𝑢𝑢 − 𝑢𝑢�𝑑𝑑 − 𝑢𝑢𝑒𝑒,𝑖𝑖, Δ𝑖𝑖,𝑟𝑟 = 2∫ −𝑢𝑢𝑢𝑢𝑒𝑒,𝑖𝑖+1
𝑘𝑘 𝑅𝑅(u − 𝑢𝑢�𝑑𝑑)

𝑡𝑡𝑟𝑟+1
𝑡𝑡𝑟𝑟

𝑑𝑑𝑑𝑑 

For Vi and ue,i+1, they can be approximated by linear combinations of a set of linearly independent basis 
functions, 

𝑉𝑉�𝑖𝑖(𝜅𝜅,𝜓𝜓,𝑋𝑋𝐿𝐿, 𝑒𝑒) = �𝜌𝜌�𝑖𝑖,𝑗𝑗𝜙𝜙𝑖𝑖,𝑗𝑗
𝑉𝑉 (𝜅𝜅,𝜓𝜓,𝑋𝑋𝐿𝐿, 𝑒𝑒)

𝑁𝑁𝑉𝑉

𝑗𝑗=1
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𝑢𝑢�𝑒𝑒,𝑖𝑖+1(𝜅𝜅,𝜓𝜓,𝑋𝑋𝐿𝐿, 𝑒𝑒) = �𝜇𝜇�𝑖𝑖,𝑗𝑗𝜙𝜙𝑖𝑖+1,𝑗𝑗
𝑢𝑢 (𝜅𝜅,𝜓𝜓,𝑋𝑋𝐿𝐿, 𝑒𝑒)

𝑁𝑁𝑢𝑢

𝑗𝑗=1

 

Then, the following equation can be derived. 

𝜌𝜌�𝑖𝑖
𝑘𝑘Φ𝑖𝑖

𝑉𝑉(𝑡𝑡𝑟𝑟+1) − 𝜌𝜌�𝑖𝑖
𝑘𝑘Φ𝑖𝑖

𝑉𝑉(𝑡𝑡𝑟𝑟) + 2� Φ𝑖𝑖+1
𝑢𝑢𝑘𝑘

𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
𝜇𝜇�𝑖𝑖
𝑘𝑘𝑅𝑅υ�𝑖𝑖𝑑𝑑𝑑𝑑 = � −𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 − 𝑢𝑢�𝑢𝑢𝑒𝑒,𝑖𝑖

𝑘𝑘 𝑅𝑅𝑢𝑢�𝑒𝑒,𝑖𝑖

𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
𝑑𝑑𝑑𝑑 + 𝜉𝜉𝑖𝑖,𝑟𝑟 

with  

v�𝑖𝑖 = 𝑢𝑢 − 𝑢𝑢�𝑑𝑑 − 𝑢𝑢�𝑒𝑒,𝑖𝑖, Φ𝑖𝑖
𝑉𝑉 = [𝜙𝜙𝑖𝑖,1

𝑉𝑉 ,…, 𝜙𝜙𝑖𝑖,𝑗𝑗𝑉𝑉 , … ,𝜙𝜙𝑖𝑖,𝑁𝑁𝑉𝑉
𝑉𝑉 ]𝑇𝑇 

Φ𝑖𝑖
𝑢𝑢 = [𝜙𝜙𝑖𝑖,1

𝑢𝑢 ,…, 𝜙𝜙𝑖𝑖,𝑗𝑗𝑢𝑢 , … ,𝜙𝜙𝑖𝑖,𝑁𝑁𝑢𝑢
𝑢𝑢 ]𝑇𝑇, ρ�𝑖𝑖 = [ρ�𝑖𝑖,1, … , ρ�𝑖𝑖,𝑗𝑗, … , ρ�𝑖𝑖,𝑁𝑁𝑉𝑉]𝑘𝑘 

μ�𝑖𝑖 = [μ�𝑖𝑖,1, … , μ�𝑖𝑖,𝑗𝑗, … , μ�𝑖𝑖,𝑁𝑁𝑢𝑢]𝑘𝑘 

Therefore, the approximation error is  

ξ𝑖𝑖,𝑟𝑟 = [Φ𝑖𝑖
𝑉𝑉|𝑡𝑡𝑟𝑟
𝑡𝑡𝑟𝑟+1]𝑘𝑘ρ�𝑖𝑖 + 2� (𝜐𝜐� 𝑖𝑖

𝑘𝑘𝑅𝑅)⨂Φ𝑖𝑖+1
𝑢𝑢𝑘𝑘

𝑡𝑡𝑟𝑟+1

𝑡𝑡𝑟𝑟
𝑑𝑑𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣(𝜇𝜇�𝑖𝑖+1

𝑘𝑘 ) 

Define 𝜉𝜉𝑖𝑖 = [𝜉𝜉𝑖𝑖,1, … , 𝜉𝜉𝑖𝑖,𝑟𝑟, … , 𝜉𝜉𝑖𝑖,𝑙𝑙]
𝑘𝑘 , then the following equation holds 

𝜉𝜉𝑖𝑖 = Λ𝜉𝜉,𝑖𝑖 �
ρ�𝑖𝑖

𝑣𝑣𝑒𝑒𝑣𝑣(𝜇𝜇�𝑖𝑖+1
𝑘𝑘 )

� + Ξ𝜉𝜉,𝑖𝑖 

Ξ𝜉𝜉,𝑖𝑖 = � 𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 + 𝑢𝑢�𝑢𝑢𝑒𝑒,𝑖𝑖
𝑘𝑘 𝑅𝑅𝑢𝑢�𝑒𝑒,𝑖𝑖

𝑡𝑡2

𝑡𝑡1

𝑑𝑑𝑑𝑑, … ,� 𝑒𝑒𝑘𝑘𝑄𝑄𝑒𝑒 + 𝑢𝑢�𝑢𝑢𝑒𝑒,𝑖𝑖
𝑘𝑘 𝑅𝑅𝑢𝑢�𝑒𝑒,𝑖𝑖

𝑡𝑡𝑙𝑙+1

𝑡𝑡𝑙𝑙
𝑑𝑑𝑑𝑑 

Λ𝜉𝜉,𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡ [Φ𝑖𝑖

𝑉𝑉|𝑡𝑡1

𝑡𝑡2]𝑘𝑘 2� (𝜐𝜐� 𝑖𝑖
𝑘𝑘𝑅𝑅)⨂Φ𝑖𝑖+1

𝑢𝑢𝑘𝑘
𝑡𝑡2

𝑡𝑡1

𝑑𝑑𝑑𝑑
… …

[Φ𝑖𝑖
𝑉𝑉|𝑡𝑡𝑙𝑙
𝑡𝑡𝑙𝑙+1]𝑘𝑘 2� (𝜐𝜐� 𝑖𝑖

𝑘𝑘𝑅𝑅)⨂Φ𝑖𝑖+1
𝑢𝑢𝑘𝑘

𝑡𝑡𝑙𝑙+1

𝑡𝑡𝑙𝑙
𝑑𝑑𝑑𝑑
⎦
⎥
⎥
⎥
⎤

 

According to least square method, the unknown parameters of the approximations can be calculated by 

�
ρ�𝑖𝑖

𝑣𝑣𝑒𝑒𝑣𝑣(𝜇𝜇�𝑖𝑖+1
𝑘𝑘 )

� = −(Λ𝜉𝜉,𝑖𝑖
𝑘𝑘 Λ𝜉𝜉,𝑖𝑖)

−1Λ𝜉𝜉,𝑖𝑖
𝑘𝑘 Ξ𝜉𝜉,𝑖𝑖 
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The detailed algorithm is shown in Algorithm 2. 

Algorithm 2. Two-Phase Data-Driven Policy Iteration 

Begin  

1. Phase-one: solving the regulator equation. 
2. Choose Driving inputs 𝑢𝑢𝑥𝑥,1 to explore the system. 
3.  Collect data and construct the matrix Ξ𝜀𝜀 and Λ𝜀𝜀 
4. Estimate 𝑖𝑖 and 𝑔𝑔�. 
5. Calculate 𝑢𝑢�𝑑𝑑  
6. Phase-two: solving the HJB equation. 
7. Repeat 
8. Choose Driving inputs 𝑢𝑢𝑥𝑥,2 to explore the system. 
9. Collect data and construct the matrix Ξ𝜉𝜉,𝑖𝑖 and Λ𝜉𝜉,𝑖𝑖 
10. Calculate 𝑉𝑉�𝑖𝑖 and 𝑢𝑢�𝑒𝑒,𝑖𝑖+1 
11. 𝑖𝑖 ← 𝑖𝑖 + 1; 
12. until 𝑖𝑖 > 𝑀𝑀 
13. update controller 𝑢𝑢�𝑖𝑖(𝑡𝑡) = 𝑢𝑢�𝑒𝑒,𝑖𝑖 + 𝑢𝑢�𝑑𝑑. 

 

 

Subsection 2.4 Numerical Simulation 

In this section, simulations are conducted to show the efficiency of the two-phase data-driven policy 
iteration approach. 𝑄𝑄 and 𝑅𝑅 are set as the identity matrix. As shown in Figure 8, initially, the cost is 𝐽𝐽 =
967.87. After 12 iterations, the cost converges to 𝐽𝐽 = 20.08. With the generated by the Algorithm 2, the 
error states’ trajectory is shown in Figure 9. From these two figures, we can conclude that the learned 
controller can achieve the combined longitudinal and lateral control and minimize the cost at the same 
time. 
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Figure 8. Cost for each Iteration 

 

Figure 9. Error States of the Leading-following Vehicles 

Subsection 2.5 Conclusion 

In this paper, to achieve the combined longitudinal and lateral optimal control of an autonomous vehicle 
in the absence of the full knowledge of the following vehicle's dynamic model, we propose a two-phase 
data-driven policy iteration algorithm. Compared with the traditional model-based control approaches, 
the proposed algorithm avoids the need to build a mathematical model for the following vehicle and 
identify the physical parameters of the model. Compared with existing conventional reinforcement 
learning approaches, the proposed learning algorithm generates a sequence of stable sub-optimal 
controllers that converge to the optimal controller. In addition, its efficacy has been validated by using 
numerical simulations. 
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	This report adopts ideas from reinforcement learning [13] and adaptive dynamic programming (ADP) [14] to develop an intelligent and safe AOC algorithm for CAVs in the mixed traffic scenario. By systematic use of control theory, ADP has proven to be a powerful method to learn safe and stable controllers by using real-time data collected along the trajectory of the controlled system. One major advantage of ADP, as opposed to traditional reinforcement learning [13], lies in the fact that the closed-loop stability of the dynamic system is established when the learned control policy is implemented. Meanwhile, the stability/robustness of the CAV controller characterizes the convergence of the platoon toward a desired equilibrium state (headway and velocity). As a result of the closed-loop stability, it ensures that the state is bounded around the equilibrium and, thus, the safety can be ensured at all times. In [15], an ADP-based control design is proposed for the CAVs under a mixed traffic-flow environment. In our prior work [16], we developed a learning-based AOC algorithm to tackle the input-delay issue resulting from the vehicle’s engine lags. Nonetheless, the impact of the human driver reaction time in the platoon has not been fully investigated. The reaction time constitutes the delays in the state of the human–vehicle platooning system, which can notably affect stability and control performance and even cause congestion and possibly crashes [17]. Therefore, a learning-based AOC algorithm to properly deal with the effect of the human driver reaction delay is advantageous to ensure the safety of mixed platoons and the optimal performance of the vehicular network.
	In this report, we model the system of a platoon mixed with multiple connected HDVs and a CAV as a set of differential difference equations (DDEs), by taking into account drivers’ heterogeneous feedback gains and reaction delays as well as the actuator (engine) delay. (See Fig. 1 for the communication topology.) Then, we follow an approximate discretization procedure to rewrite DDEs into a sampled-data linear system with approximation error. This discretization step transforms the problem of controlling DDEs to the control of an augmented linear system without delay and simplifies the control design procedure. Next, we incorporate a value-iteration (VI)-based ADP method with sampled-data control theory and propose a learning-based AOC design for the CAV without the exact knowledge of the human drivers in the platoon. We show the effectiveness of our proposed method through a SUMO-based simulation [35], which is an open-source microscopic traffic simulation platform. In addition, the proposed algorithm is validated using the well-known next-generation simulation (NGSIM) dataset. The main contributions of this report are summarized as follows.
	1) The proposed learning-based controller for the CAV can adapt to different platoon dynamics caused by heterogeneous driver behavior.
	2) The performance of the controlled platoon is optimized according to a linear quadratic criterion such that the velocity and headway fluctuations between vehicles are minimized and abrupt accelerations/decelerations that can cause unsafe situations are avoided.
	3) To address safety concerns during real-time data collection, the presented algorithm can employ historical data and real-time data at the same time, which aims to speed up the learning process.
	In this section, we briefly introduce the mathematical modeling of car-following behaviors of the HDV and the CAV. In our study, a mixed traffic platoon of n HDVs and one CAV is examined, as shown in Fig. 1. hi is defined as the bumper-to- bumper distance between vehicle i and its preceding vehicle i−1, vi as the velocity of vehicle i. With this simplified topology of the communication network, each CAV only receives motion data from the preceding connected HDVs. This setting does not cause a loss of generality for multiple CAVs, where every platoon can be considered to be separated by a CAV [12].
	/
	Figure 1. Platoon of Connected Human-driven and CAVs
	Here, we consider the well-known optimal velocity model (OVM) with reaction delays [18], which is a nonlinear system. After linearizing it around the equilibrium, the OVM model can be written as DDEs
	ℎ𝑖𝑡=𝑣𝑖−1𝑡−𝑣𝑖𝑡 
	 𝑣𝑖𝑡=𝛼𝑖𝑁∗ℎ𝑖𝑡−𝐿𝑖−𝑣𝑡−𝐿𝑖+𝛽𝑖𝑣𝑖−1𝑡−𝐿𝑖−𝑣𝑖𝑡−𝐿𝑖 
	The CAV to be controlled is at the tail of the platoon, that is, there exist n preceding HDVs. (See Fig. 1 for an illustration.) Thus, the subscript of the CAV is n+1. By adopting a constant spacing policy for the CAV, it will follow an assigned traffic equilibrium (h∗n+1, v∗). Then, the error dynamics of the CAV in the platoon is described by ℎ𝑛+1𝑡=𝑣𝑛𝑡−𝑣𝑛+1𝑡
	𝑣𝑛+1𝑡=𝑢(𝑡−𝜂)
	where ℎ𝑛+1𝑡= ℎ𝑛+1−ℎ𝑛+1∗, 𝑣𝑛+1𝑡= 𝑣𝑛+1−𝑣∗, and u is the designed control input, that is, the acceleration of the vehicle n+1 and η≥0 is the input time delay.
	Combining the aforementioned error dynamics, the statespace of the mixed traffic flow can be formulated. Suppose, for such a platoon of n + 1 vehicles, there exist p distinct drivers’ reaction delays, where p ≤ n. Assuming that there is a fictitious leading vehicle 0 traveling at constant velocity with v0(t) ≡ v∗, h0(t) ≡ h∗. Then, we focus on the controller design for the CAV in the platoon, whose state space representation is as follows:
	𝑥𝑡=𝐴0𝑥𝑡+𝑖=1𝑝𝐴𝑖𝑥𝑡−𝐿𝑖+𝐵𝑢(𝑡−𝜂)
	where the state vector 𝑥(𝑡) = [ℎ1, 𝑣1, . . . ,ℎ𝑛+1, 𝑣𝑛+1]𝑇∈ ℝ𝑛𝑥 , nx = 2(n+1) and the input vector u ∈ ℝ. The designed controller u is only for the CAV at the tail of the platoon, while HDVs are not directly controlled in any form. Note that since HDVs are assumed to be stable, that is, each driver of the vehicle can achieve the traffic-flow equilibrium, the whole platooning system (5) is stabilizable in this setting, which is equivalent to
	𝑟𝑎𝑛𝑘𝑠𝐼−𝐴0−𝑖=1𝑝𝐴𝑖𝑒−𝑠𝐿𝑖    𝐵=𝑛𝑥
	for s∈ℂ+.
	To achieve a digital implementation, a sampled-data system with sampling interval T is considered. Integrating the linear model of the platoon over a sampling interval [kT, kT + T] gives 
	𝑥𝑘𝑇+𝑇=𝑒𝐴0𝑇𝑥𝑘𝑇+0𝑇𝑒𝐴0𝑇−𝑟𝑖=1𝑝𝐴𝑖𝑥𝑘𝑇+𝑟−𝐿𝑖𝑑𝑟+0𝑇𝑒𝐴0𝑇−𝑟𝐵𝑢(𝑘𝑇+𝑟−𝜂)𝑑𝑟
	Here, we briefly review the procedure of sampling a set of DDEs. First, the drivers’ reaction delays and the engine lag can be rewritten into
	𝐿𝑖=𝑁𝑖−1+𝑎𝑖𝑇 
	𝜂=(𝑀−1+𝑏)𝑇
	where integers Ni ≥ 1, M ≥ 1, and ai ∈ [0, 1), b ∈ [0, 1). Suppose the maximum value of Ni is known as Nmax and M is known as well. Then, the system in Figure 1 is discretized based on the following rules: 1) during each sampling interval, the delayed control signal u(t−η) is piecewise constant and 2) the delayed state variable x(t −Li) is estimated by the interpolation method. Figure 2 illustrates the discretization procedure.
	/
	Figure 2. Interpolation-based Estimation for Delayed State Variables
	The expression of the discretized input u can be expressed as
	𝑢𝑘𝑇+𝑟−𝜂=𝑢𝑘𝑇−𝑀𝑇, 𝑖𝑓 𝑟∈[0,𝑏𝑇)𝑢𝑘𝑇−𝑀𝑇+𝑇, 𝑖𝑓 𝑟∈[𝑏𝑇,𝑇).
	Similarly, for r ∈ [0, aiT), the interpolated value x(kT+r−Li) is given by 
	𝑥𝑘𝑇+𝑟−𝐿𝑖=𝑎𝑖−𝑟𝑇𝑥𝑘𝑇−𝑁𝑖𝑇+1−𝑎𝑖+𝑟𝑇𝑥𝑘𝑇−𝑁𝑖𝑇+𝑇
	and for r ∈ [aiT, T], x (kT + r − Li) is described by
	𝑥𝑘𝑇+𝑟−𝐿𝑖=1−𝑟𝑇+𝑎𝑖𝑥𝑘𝑇−𝑁𝑖𝑇+𝑇+𝑟𝑇−𝑎𝑖𝑥𝑘𝑇−𝑁𝑖𝑇+2𝑇
	For notational simplicity, we define xk = x(kT) and uk =u(kT) for k ∈ ℤ+. Then according to the aforementioned equations, the dynamics of the state x can be expressed as
	𝑥𝑘+1=𝐹0𝑥𝑘+𝐺𝑀𝑢𝑘−𝑀+𝐺𝑀−1𝑢𝑘−𝑀+1+𝑤𝑘+𝑖=1𝑝(𝐹𝑁𝑖𝑥𝑘−𝑁𝑖+𝐹𝑁𝑖−1𝑥𝑘−𝑁𝑖+1+𝐹𝑁𝑖−2𝑥𝑘−𝑁𝑖+2)
	By defining an augmented state z𝑘=[𝑥𝑘𝑇,𝑥𝑘−1𝑇,…,𝑥𝑘−𝑁𝑚𝑎𝑥𝑇, 𝑢𝑘𝑇,𝑢𝑘−1𝑇,…,𝑥𝑘−𝑀𝑇]𝑇∈ℝ𝑛𝑧, where 𝑛𝑧=𝑛𝑥(𝑁max + 1) + 𝑀. we have the following system representation
	𝑧𝑘+1=𝒜𝑧𝑘+ℬ𝑢𝑘+𝒟𝑤𝑘
	In order to attenuate the disturbance for the mixed traffic, and considering the aforementioned discretized linear system without the approximation error w, the following LQR problem is formulated
	min𝑢𝑘=0∞(𝑧𝑘𝑇𝑄𝑧𝑘+𝑟𝑢𝑘2)
	Subject to 𝑧𝑘+1=𝒜𝑧𝑘+ℬ𝑢𝑘.
	If the accurate dynamic model of the platoon is known, we can solve the LQR problem by the following VI approach
	𝑃𝑗+1=𝒜𝑇𝑃𝑗𝒜+𝑄−𝒜𝑇𝑃𝑗ℬ(𝑟+ℬ𝑇𝑃𝑗ℬ)−1ℬ𝑇𝑃𝑗𝒜
	𝐾𝑗+1=(𝑟+ℬ𝑇𝑃𝑗ℬ)−1ℬ𝑇𝑃𝑗+1𝒜
	In this section, a data-driven ADP learning algorithm is proposed to solve the optimal control problem without accurate knowledge of the human driver’s feedback gains and reaction time.
	First, denote
	𝐻𝑗=𝐻𝑗11𝐻𝑗12(𝐻𝑗12)𝑇𝐻𝑗22=ℬ𝑇𝑃𝑗ℬℬ𝑇𝑃𝑗𝒜𝒜𝑇𝑃𝑗ℬ𝒜𝑇𝑃𝑗𝒜
	where j is a non-negative integer and H0 is zero matrix of appropriate dimension. Then, the augmented system derived in the previous section can be rewritten into
	𝑧𝑘+1=𝒜𝑗𝑧𝑘+ ℬ𝐾𝑗𝑧𝑘+𝑢𝑘+𝒟𝑤𝑘
	where j = -Kj. Then according to the model based value iteration and the aforementioned equation, we have 
	When the dynamics is unknown to us, based on ADP technique, we propose a data-driven method to solve the aforementioned equations,
	𝑧𝑘+1𝑇Q𝑧𝑘+1=−𝑧𝑘+1𝑇ℱ𝑃𝑗𝑧𝑘+1+ 𝑧𝑘+1𝑇𝑃𝑗+1𝑧𝑘+1=−𝑧𝑘+1𝑇𝐻𝑗22−(𝐻𝑗12)𝑇𝑟+𝐻𝑗11−1𝐻𝑗12𝑧𝑘+1+𝑣𝑒𝑐𝑣𝑢𝑘𝑧𝑘𝑇𝑣𝑒𝑐𝑠𝐻𝑗+1+𝜉𝑘𝑗=−𝜙𝑘+1𝑗+ψ𝑘𝑇𝑣𝑒𝑐𝑠𝐻𝑗+1+𝜉𝑘𝑗
	where 
	ℱ𝑃𝑗=𝒜𝑇𝑃𝑗𝒜−𝒜𝑇𝑃𝑗ℬ(𝑟+ℬ𝑇𝑃𝑗ℬ)−1ℬ𝑇𝑃𝑗𝒜
	𝜙𝑘+1𝑗=𝑧𝑘+1𝑇𝐻𝑗22−(𝐻𝑗12)𝑇𝑟+𝐻𝑗11−1𝐻𝑗12𝑧𝑘+1
	𝜓𝑘=𝑣𝑒𝑐𝑣𝑢𝑘𝑧𝑘.
	Also, we have 𝜉𝑘𝑗=2𝑤𝑘𝑇𝒟𝑇𝑃𝑗+1𝒜𝑧𝑘+2𝑤𝑘𝑇𝒟𝑇𝑃𝑗+1ℬ𝑢𝑘+𝑤𝑘𝑇𝒟𝑇𝑃𝑗+1𝑤𝑘.
	In order to determine Hj+1 from (23), measurable data, that is, .z and u, are collected at multiple time instants k0 < k1 < · · · < k.s where s is a sufficiently large positive integer. In particular, we can define
	Ψ=[ψ𝑘0,ψ𝑘1,…,ψ𝑘𝑝]𝑇
	Φ𝑗=[𝑧𝑘0+1𝑇𝑄𝑧𝑘0+1+𝜙𝑘0+1𝑗,…,𝑧𝑘0+1𝑇𝑄𝑧𝑘𝑠+1+𝜙𝑘𝑠+1𝑗]𝑇
	Then (23) can be expressed in the following matrix form:
	ΨU𝑗+1+Ξ𝑗=Φ𝑗, U𝑗+1=𝑣𝑒𝑐𝑠H𝑗+1, Ξ𝑗=[𝜉𝑘0𝑗,…,𝜉𝑘𝑠𝑗]𝑇
	Then Uj+1 and Kj+1 can be updated by 
	U𝑗+1=(Ψ𝑇Ψ)−1Ψ𝑇Φ𝑗−Ξ𝑗, K𝑗+1=𝑟+𝐻𝑗11−1𝐻𝑗12
	However, the approximation error wk is not measurable in general, which implies that Uj+1 cannot be obtained as the aforementioned method, so as Kj+1. Next, an approximate solution is proposed.
	We define the matrix 𝐻𝑗 as the approximate solution to Hj
	𝐻𝑗=𝐻𝑗11𝐻𝑗12(𝐻𝑗12)𝑇𝐻𝑗22
	Where 𝐻0=𝐻0. Similar to the definition of 𝜙𝑘+1𝑗, we construct 
	𝜙𝑘+1𝑗=𝑧𝑘+1𝑇𝐻𝑗22−(𝐻𝑗12)𝑇𝑟+𝐻𝑗11−1𝐻𝑗12𝑧𝑘+1
	which defines Φ𝑗=[𝑧𝑘0+1𝑇𝑄𝑧𝑘0+1+𝜙𝑘0+1𝑗,…,𝑧𝑘𝑠+1𝑇𝑄𝑧𝑘𝑠+1+𝜙𝑘𝑠+1𝑗]𝑇, with Φ0=Φ0. Furthermore, let the approximate solution𝑈𝑗=vecs(𝐻𝑗), which is solved by
	U𝑗+1=(Ψ𝑇Ψ)−1Ψ𝑇Φ𝑗,
	Then, the controller can be updated by the approximated solution 𝑈𝑗
	K𝑗+1=𝑟+𝐻𝑗11−1𝐻𝑗12.
	Algorithm 1 shows the detailed VI-Based ADP algorithm. 
	Algorithm 1. VI-Based ADP Algorithm
	Begin 
	1. Select a sufficiently small threshold 𝜂ℎ>0. 𝐻0←0.
	2. Apply an initial controller, e.g. adaptive cruise controller with exploration noise on the time interval [𝑘0, 𝑘𝑠] to collect real time data. Compute Φ0 and Ψ. Let 𝑗←0.
	3. while the rank condition is NOT satisfied
	4. Draw an experience 𝑒 from historical data set ℋ, and insert it into Φ0 and Ψ;
	5. end while
	6. repeat
	7. Determine 𝐻𝑗+1 and 𝐾𝑗+1.
	8.  𝑗←𝑗+1;
	9. until 𝐻𝑗−𝐻𝑗−1<𝜂ℎ
	10. 𝑗∗←𝑗
	11. Update controller 𝑢𝑘=−𝐾𝑗∗𝑧𝑘.
	In this section, we first present the simulation results using SUMO to demonstrate the efficacy of the proposed data-driven ADP method. Here, the sampling period is set as T = 0.2 [s]. 
	The platoon consists of three HDV followed by a CAV. The weighting matrices are set as Q=10−2𝐼 and 𝑟=1. The initial control policies for the CAV are adaptive cruise control, which does not employ the data exchange from the HDVs. We collect the real-time data from 0 [s] to 10 [s], which generates 50 data points, and then obtain the rest from the historical data points. At 10 [s], the controller is updated following the proposed algorithm (Algorithm 1). The time trajectories of the platooning vehicles are depicted in Fig. 3. The convergence results of the algorithm are shown in Fig. 3(b). As analyzed in Theorems 1 and 2, the difference between the learned controller and the optimal one is affected by the quality of the data, including the sampling interval. It is observed that after 400 iterations the differences are close to zero. The computation time of the proposed algorithm for all iterations in this simulation is 2.2 [s] using Intel Core i7- 4720HQ CPU 2.60 GHz and 16.0-GB memory.
	Robustness Evaluation Compared with the Model-Based Approach: We compare our proposed learning-based control algorithm with a model-based optimal control design method, that is, LQR, where the design is based on the nominal driver-dependent parameters. As a result, the mismatch between the nominal and the actual values of the driver-dependent parameters causes the nonoptimal performance of the model-based control design method. In the simulation, the velocity of the fictitious leading vehicle 0 follows 𝑣0𝑡=𝑣∗+4sin(𝑡). We implement our learning-based controller and the model-based design for the CAV. The result is shown in Figure 4, where the ADP-based controller produces smaller magnitude of oscillation in terms of velocity and headway. As a consequence, the learning-based design can lead to a better disturbance attenuation performance compared to the model-based optimal control design.
	//
	Figure 3. Time Trajectories of the Four-vehicle Platooning System. (a) Speed and Spacing Trajectory of Vehicles #1–#4. (b) Convergence Results of the Proposed Algorithm
	In addition, the energy efficiency improvement is computed for the CAVs’ trajectories in Figure 4, where the net energy is defined as
	𝐸𝑤=0𝑡𝑓𝐹𝑤(𝑡)𝑣(𝑡)𝑑𝑡
	where tractive or braking force at the wheels Fw(t) = ma(t)+ mgCr +(1/2)ρaAfCDv2(t), m is the mass of the vehicle, Cr is the coefficient of rolling resistance, ρa is the air density, Af is vehicle front area, CD is the aerodynamic drag coefficient, and g is the gravitational acceleration. a(t) and v(t) are the acceleration and the velocity of the CAV, respectively.It shows that the ADP-based control algorithm can reduce the total energy consumption by 7.12%, compared to the model-based optimal control design using the homogeneous nominal driver-dependent parameters.
	/
	Figure 4. Speed and Spacing Trajectory of the CAV using the Proposed ADP-based Controller and the Model-based Optimal Controller
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	Figure 5. Time Trajectories of a Five-vehicle Platoon in NGSIM. (a) Space–time and Velocity Profile of all Vehicles. (b) Velocity Profile of Vehicle 1166 and the CAV
	Then, we validate our proposed ADP algorithm using the vehicle trajectories from the NGSIM dataset. In particular, The U.S. Highway 101 (US 101) dataset is adopted, and the investigated lane is lane 4 in the five mainline lanes. The platoon trajectories of vehicles 1469, 1482, 1481, 1157, and 1166 are collected and the detailed illustration is shown in Figure 5(a). In the simulation, the vehicle 1166 (black dotted line) is replaced by a CAV equipped with our ADP controller and starts with the same initial condition as shown by the blue dotted line in Fig. 5(a). When the platoon is formed, we note that the CAV can safely keep a smaller steady-state headway (60 [m]) with respect to its immediately preceding vehicle, compared to the one between vehicles 1166 and 1157 This can potentially increase the traffic throughput. In addition, the velocity profile of the CAV is smoother than the one of vehicle 1166, which can lead to more passenger comfort and better energy efficiency. 
	In this article, we have studied a general learning-based AOC problem for a platoon mixed with a CAV and multiple HDVs (equipped with V2V communication technology) subjected to heterogeneous drivers’ behavior. By integrating the sampled-data control theory and an ADP method, an approximate optimal controller is designed for the CAV at the tail of the platoon, using a data-driven approach and without the exact knowledge of the driver behavior model in the platoon. The novel reinforcement-learning-based control method employs both the historical data and the data collected in real time, due to the off-policy property of our proposed ADP algorithm. This significantly reduces learning duration and thus provides additional safety improvements. We have validated our proposed approach through SUMO simulations and the NGSIM dataset.
	In this study, the range policy in the OVM is assumed to be homogeneous for drivers in the platoon. We aim to relax the assumption in our future work. In addition, our future work will also include the AOC of connected vehicles for improved safety performance, energy efficiency, and more complex maneuvers, such as lane changing. The AOC design with different communication topologies of CAVs will be considered as well as highly nonlinear vehicle models.
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	The increase in the number of vehicles challenges the capability of the existing transportation infrastructure. To solve the congestion and safety problems caused by increased transportation demands, one way is to optimize the transportation infrastructure, including the highway design and traffic signals. The other way is to reduce the distance between vehicles to increase road capability. ACC is developed to reduce the inter-vehicle distance with the feedback of the inter-vehicle distance and the relative velocity. Then with the V2V, ACC is extended to CACC, which can not only reduce the distance between vehicles but also attenuate the disturbance along the platoon [19]. For ACC and CACC, most existing methods emphasis on the longitudinal control of autonomous vehicles, which assumes that the vehicles move along a straight road. However, in many cases, roads are curved. In this case, vehicles should not only maintain a desired inter-vehicle distance, but also stay in lane. Therefore, combined longitudinal and lateral control of autonomous vehicles is a significant research topic.
	To achieve the combined longitudinal and lateral control for autonomous vehicles, one method is to decompose it into two independent subsystems: longitudinal subsystem and lateral subsystem [20]. For longitudinal control, ACC or CACC can be applied. For instance, in [21], the authors propose a data-driven adaptive optimal control approach to solve the CACC problem considering the input delay and the disturbance. For lateral control, a lane keeping controller design method should be applied. For instance, in [22], camera is applied to detect the lane and a data-driven optimal control approach is proposed to achieve the lateral control. Ploeg [23] propose a look-ahead approach to follow the preceding vehicle. However, cutting corner phenomenon will happen when the following vehicle follows the preceding vehicle directly. To overcome the cutting-corner limitation, an extended look-ahead approach is proposed in [24]. However, when considering the nonlinear dynamics of the vehicle, the physical parameters, especially the tire cornering stiffness, are hard to measure. Besides, in these methods, the performance of the designed controller cannot be guaranteed optimal. 
	ADP is an effective data-driven approach to find the optimal controller without requiring the precise knowledge of the system dynamics. ADP is developed based on the dynamic programming and reinforcement learning. The data along the trajectories of the control system, including the states and the control inputs, are collected, and then these data are applied iteratively to find the optimal controller. It is theoretically shown that at each iteration a sub-optimal controller with improved performance can be obtained, and with the iteration of the learning algorithm, these obtained sub-optimal controllers can converge to the optimal one. Guaranteed stability with learning-based controllers for the closed-loop system is an advantage of ADP over traditional reinforcement learning algorithm. Therefore, ADP attracts considerable attention in the transportation field of which safety is a top priority to be considered. For instance, some researchers propose an ADP-based CACC for an exclusive bus line. Some presented an ADP-based control strategy to achieve lateral stability of the autonomous vehicle. Someone proposed a shared framework of the driver and the autonomous vehicle to achieve lateral control. In these papers, ADP is applied to linear systems. However, for the combined longitudinal and lateral control of the autonomous vehicle, the vehicle dynamics is nonlinear. Clearly, using a linearized model can only guarantee the local stability of the closed-loop system.
	In this report, to solve the data-driven combined longitudinal and lateral optimal control problem, considering the nonlinear dynamics of the vehicle, the ADP based output regulation approach [25] is adopted. Firstly, the nonlinear dynamics of the following vehicle is established. Based on the extended look-ahead approach [24] and the dynamics of the following vehicle, the error states of the system are defined, and the dynamics of the corresponding error system is derived. Then, based on the dynamics of the error system, the HJB equation is applied to solve the corresponding optimal control problem and a model-based policy iteration algorithm is proposed to solve the HJB equation. Finally, based on the ADP approach, a two-phase data-driven policy iteration algorithm is proposed. The first phase is to obtain the desired driving inputs when the error states are zero by solving the corresponding regulator equation. The second phase is to iteratively solve the HJB equation by the collected data.
	In this report, to solve the data-driven combined longitudinal and lateral optimal control problem, considering the nonlinear dynamics of the vehicle, the ADP based output regulation approach is adopted. Firstly, the nonlinear dynamics of the following vehicle is established. Based on the extended look-ahead approach and the dynamics of the following vehicle, the error states of the system are defined and the dynamics of the corresponding error system is derived. Then, based on the dynamics of the error system, the HJB equation is applied to solve the corresponding optimal control problem and a model based policy iteration algorithm is proposed to solve the HJB equation. Finally, based on the ADP approach, a two-phase data-driven policy iteration algorithm is proposed. The first phase is to obtain the desired driving inputs when the error states are zero by solving the corresponding regulator equation. The second phase is to iteratively solve the HJB equation by the collected data. Compared with previous works of others, this paper proposes a data-driven solution to the combined longitudinal and lateral control when the nonlinear dynamics of the following vehicle is considered. In particular, using reinforcement learning techniques, an optimal controller is learned from real-time data without assuming the precise knowledge of the vehicle model.
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	Figure 6. The Leading and the Following Vehicle
	Let 𝑋𝐿=[𝑥𝐿,𝑦𝐿,𝜑𝐿,𝑉𝐿, 𝜔𝐿]𝑇 denote the state of the leading vehicle, The kinematics of the leading vehicle can be expressed as
	x𝐿=𝑉𝐿cos𝜑𝐿, y𝐿=𝑉𝐿sin𝜑𝐿
	𝜑𝐿=𝜔𝐿, 𝑉𝐿=𝑎𝐿, 𝜔𝐿=Ω𝐿
	Therefore, XL = f𝐿(X𝐿;ψ). Then the problem solved in this section can be formulated as: In the absence of the precise knowledge of the vehicle dynamics (F), calculate an optimal controller which can regulate the signal of the motor installed at each wheel of the following vehicle, such that the vehicle F can keep a desired distance from the vehicle L and move along the path.
	Let x, y, and φ denote the position and yaw angle of the vehicle F. Vx, Vy and w denote the longitudinal, lateral and yaw angular velocity of the vehicle F. Then according to the kinematics of the vehicle F, one can obtain the following equation
	𝑥=𝑉𝑥cos𝜑−𝑉𝑦sin𝜑
	𝑦=𝑉𝑥sin𝜑+𝑉𝑦cos𝜑
	𝜑=𝜔
	Figure 7 shows the dynamic model of the following vehicle. Considering the tire model, the dynamics of the following vehicle can be expressed as 
	𝑉𝑥=𝑉𝑦𝜔−𝐶𝑎𝑀𝑉𝑥2+2𝑘𝑀𝑢1+2𝑘𝑀𝑢3
	𝑉𝑦=−𝑉𝑥𝜔−𝐶𝑓+𝐶𝑟𝑀𝑉𝑦𝑉𝑥+𝐶𝑟𝑙𝑟−𝐶𝑓𝑙𝑓𝑀𝜔𝑉𝑥+𝐶𝑓𝑀𝑢2
	𝜔=𝐶𝑟𝑙𝑟−𝐶𝑓𝑙𝑓𝑀𝑉𝑦𝑉𝑥−𝐶𝑟𝑙𝑟2+𝐶𝑓𝑙𝑓2𝐼𝑧𝜔𝑉𝑥−2𝑙𝑠𝑘𝐼𝑧𝑢1+𝐶𝑓𝑙𝑓𝐼𝑧𝑢2+2𝑙𝑠𝑘𝐼𝑧𝑢3
	Therefore 
	𝑋𝑉=[𝑉𝑥, 𝑉𝑦,𝜔]𝑇=𝑓𝑋𝑉+𝑔𝑢
	where u = [u1,u2,u3].
	In Fig.6, d denotes a constant look-ahead distance. H is the look-ahead point and it is in the direction of V. If the vehicle F follows the vehicle L directly, it will cut the corner of the path. In order to avoid the cutting-corner problem, a virtual point S is defined which is in the direction of OL, and the vehicle F follows the virtual point S instead of L. ES=d is a tangent to the path. Therefore, in order to follow the vehicle L and move along the path, the desired position of vehicle F is E, and if this happens, S coincides with H. Therefore, OES forms a right triangle, and s = LS is determined by
	s=0,𝜅=0−1+1+𝜅2𝑑2𝜅,𝜅≠0
	γ can be determined by
	γ=tan−1𝜅𝑑
	The position of the virtual point is
	S=𝑥𝐿𝑦𝐿+𝑠sin𝜑𝐿−cos𝜑𝐿=𝑥𝐿𝑦𝐿+𝑠𝑥𝑠𝑦
	In order to let H converge to S, according to Fig. 6, the following variables are defined.
	𝑒1=𝑥𝐿+𝑠𝑥−𝑥−𝑑cos𝜑
	𝑒2=𝑦𝐿+𝑠𝑦−𝑦−𝑑sin𝜑
	𝑒3=𝜑𝐿−𝜑+𝛾
	𝑒4=𝑉𝐿−𝑉𝑥
	𝑒5=−𝑉𝑦
	𝑒6=𝜔𝐿−𝜔
	Besides, the following variables are defined.
	𝑧1=cos𝜑+𝛾𝑒1+sin𝜑+𝛾𝑒2
	𝑧2=−sin𝜑+𝛾𝑒1+cos𝜑+𝛾𝑒2
	Then the error states of the system are e=[𝑧1,𝑧2,e3,…,e6]𝑇. The error dynamics can be expressed as
	𝑒=𝑓𝑒𝜅,𝑋𝐿,𝑒+𝑔𝑒𝑢𝑒
	where 
	𝑓𝑒=𝑧2𝜔+𝑉𝐿+𝑠𝜔𝐿cos𝑒3−𝑉𝑥cos𝛾−(𝑉𝑦+𝑑𝜔)sin𝛾−𝑧1𝜔+𝑉𝐿+𝑠𝜔𝐿sin𝑒3+𝑉𝑥sin𝛾−(𝑉𝑦+𝑑𝜔)cos𝛾𝑒6−𝑉𝑦𝜔+𝐶𝑎𝑀(𝑉𝑥2−𝑉𝐿2)𝑉𝑥𝜔−𝑉𝐿𝜔𝐿+𝐶𝑓+𝐶𝑟𝑀𝑉𝑦𝑉𝑥+𝐶𝑓𝑙𝑓2+𝐶𝑟𝑙𝑟2𝐼𝑧(𝜔𝑉𝑥−𝜔𝐿𝑉𝐿)−𝐶𝑟𝑙𝑟−𝐶𝑓𝑙𝑓𝐼𝑧𝑉𝑦𝑉𝑥+𝐶𝑓𝑙𝑓2+𝐶𝑟𝑙𝑟2𝐼𝑧(𝜔𝑉𝑥−𝜔𝐿𝑉𝐿)
	𝑔𝑒=03×3−2𝑘𝑀0−2𝑘𝑀0−𝐶𝑓𝑀02𝑙𝑠𝑘𝐼𝑧−2𝑙𝑓𝐶𝑓𝐼𝑧−2𝑙𝑠𝑘𝐼𝑧
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	Figure 7. The Dynamic Model of the Following Vehicle
	In the aforementioned error system, 𝑢𝑒=𝑢−𝑢𝑑 and 𝑢𝑑 is the solution to the following regulator equation
	[𝑎𝐿,0,Ω𝐿]𝑇−𝑓𝑉𝐿,0,ω𝐿−𝑔𝑢𝑑=0
	In this section, to reduce the error states and the energy consumption, the cost criterion is defined as
	Jκ,ψ0,X𝐿0,𝑒0,𝑢𝑒=0∞𝑒𝑇𝑄𝑒+𝑢𝑒𝑇𝑅𝑢𝑒
	where the weighting matrices 𝑄 and 𝑅 are positive definite. The HJB equation for the corresponding optimal control problem can be expressed as
	𝜕𝑉∗𝑇𝜕𝜓E𝜓+𝜕𝑉∗𝑇𝜕𝑋𝐿𝑓𝐿+𝜕𝑉∗𝑇𝜕𝑋𝐿𝑓𝑒−14(𝜕𝑉∗𝑇𝜕𝑒𝑔𝑒)𝑅−1(𝜕𝑉∗𝑇𝜕𝑒𝑔𝑒)𝑇+𝑒𝑇𝑄𝑒=0
	where 𝑉∗(𝜅, 𝜓, 𝑋𝐿,𝑒) is the value function. The optimal controller is 
	𝑢𝑒∗=−12𝑅−1𝑔𝑒𝑇𝜕𝑉∗𝜕𝑒
	Here, a model-based policy iteration algorithm is proposed to minimize the aforementioned cost criterion,
	𝜕𝑉𝑖𝑇𝜕𝜓E𝜓+𝜕𝑉𝑖𝑇𝜕𝑋𝐿𝑓𝐿+𝜕𝑉𝑖𝑇𝜕𝑋𝐿𝑓𝑒+𝑔𝑒𝑢𝑒,𝑖+𝑒𝑇𝑄𝑒+𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖=0
	𝑢𝑒,𝑖+1=−12𝑅−1𝑔𝑒𝑇𝜕𝑉𝑖𝜕𝑒
	At each iteration, we can obtain an improved controller 𝑢𝑒,𝑖+1 and it converges to the optimal controller. 
	According to the previous sections, to obtain the optimal controller𝑢∗=𝑢𝑒∗+𝑢𝑑, the regulator equation should be solved. Besides, when calculating the model-based policy iteration, the dynamic information of the system is required. However, it is laborious to establish an accurate dynamic model in practice. In addition, even if the dynamics of the vehicle is given, solving model-based policy iteration is still nontrivial. In this section, to obtain 𝑢∗ without knowing the dynamics of the following vehicle F, a two-phase data-driven policy iteration algorithm is developed. The first phase is to solve the regulator equation, and the second phase is to solve the HJB equation with the collected data of the system based on the policy iteration. 
	The first phase of the data-driven policy iteration is to solve the regulator equation. To solve the regulator equation, the key to the problem is to find the approximations of f and g. In (4), f is a nonlinear function and g is a constant matrix. According to the approximation theory, f can by approximated by f=𝑗=1𝑁𝑓𝜎𝑗𝜙𝑗𝑓(𝑋𝑉), where 𝜎𝑗∈ℝ3 and {𝜙𝑗𝑓(𝑋𝑉)}𝑗=1∞ are linearly independent basis functions. g∈ℝ3×3 approximates g. Therefore, according to the dynamics of the following vehicle, we have
	12𝑋𝑉𝑇𝑋𝑉|𝑡𝑘𝑡𝑘+1=𝑡𝑘𝑡𝑘+1𝑋𝑉𝑇[𝑓𝑋𝑉+𝑔𝑢]𝑑𝜏+ε𝑘
	Then, the approximation error can be written as
	ε𝑘=12𝑋𝑉𝑇𝑋𝑉|𝑡𝑘𝑡𝑘+1−𝑡𝑘𝑡𝑘+1𝑋𝑉𝑇𝑓𝑋𝑉+𝑔𝑢𝑑𝜏=12𝑋𝑉𝑇𝑋𝑉|𝑡𝑘𝑡𝑘+1−𝑡𝑘𝑡𝑘+1𝑋𝑉𝑇𝜎Φ𝑓𝑋𝑉+𝑔𝑢𝑑𝜏=12𝑋𝑉𝑇𝑋𝑉|𝑡𝑘𝑡𝑘+1−𝑡𝑘𝑡𝑘+1Φ𝑓𝑇𝑋𝑉⨂𝑋𝑉𝑇𝑑𝜏𝑣𝑒𝑐𝜎−𝑡𝑘𝑡𝑘+1𝑢𝑇⨂𝑋𝑉𝑇𝑑𝜏𝑣𝑒𝑐𝑔
	where 𝜎=[𝜎1,…,𝜎𝑁𝑓] and Φ𝑓=[𝜙1𝑓,…,𝜙𝑁𝑓𝑓]. Define ε=[ε1,…,ε𝑙ε]. Then 
	ε=Ξ𝜀−Λ𝜀[𝑣𝑒𝑐𝑇𝜎,𝑣𝑒𝑐𝑇𝑔]𝑇
	where
	Ξ𝜀=[12𝑋𝑉𝑇𝑋𝑉|𝑡1𝑡2,…,12𝑋𝑉𝑇𝑋𝑉|𝑡𝑙𝑡𝑙+1]𝑇
	Λ𝜀=𝑡1𝑡2Φ𝑓𝑇𝑋𝑉⨂𝑋𝑉𝑇𝑑𝜏𝑡1𝑡2𝑢𝑇⨂𝑋𝑉𝑇𝑑𝜏……𝑡𝑙𝑡𝑙+1Φ𝑓𝑇𝑋𝑉⨂𝑋𝑉𝑇𝑑𝜏𝑡𝑙𝑡𝑙+1𝑢𝑇⨂𝑋𝑉𝑇𝑑𝜏
	Then f and g can be approximated by
	[𝑣𝑒𝑐𝑇𝜎,𝑣𝑒𝑐𝑇𝑔]𝑇=(Λ𝜀𝑇Λ𝜀)−1Λ𝜀𝑇Ξ𝜀
	where both Λ𝜀 and Ξ𝜀 can be constructed by the data collected along the trajectory of the system. The regulator equation can be solved by
	𝑢𝑑=𝑔−1([𝑎𝐿,0,Ω𝐿]𝑇−𝑓𝑉𝐿,0,ω𝐿)
	Once the regulator equation (11) is solved with the data from the system, ud can be obtained, and consequently, HJB equation can be solved by the policy iteration approach. Define 
	υ𝑖=𝑢−𝑢𝑑−𝑢𝑒,𝑖
	then the error system can be rewritten as
	𝑒=𝑓𝑒𝜅,𝜓, 𝑋𝐿,𝑒+𝑔𝑒𝑢𝑒,𝑖+𝑔𝑒υ𝑖
	Then along the trajectory generated by the aforementioned equation, with the driving input u, the derivative of Vi can be expressed as
	𝑉𝑖=𝜕𝑉𝑖𝑇𝜕𝜓E𝜓+𝜕𝑉𝑖𝑇𝜕𝑋𝐿𝑓𝐿+𝜕𝑉𝑖𝑇𝜕𝑒𝑓𝑒+𝑔𝑒𝑢𝑒,𝑖+𝑔𝑒υ𝑖
	Then with the model-based policy iteration, the following equation can be obtained 
	𝑉𝑖=−𝑒𝑇𝑄𝑒−𝑢𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖+𝜕𝑉𝑖𝑇𝜕𝑒𝑔𝑒υ𝑖=−𝑒𝑇𝑄𝑒−𝑢𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖−2𝑢𝑢𝑒,𝑖+1𝑇υ𝑖.
	Therefore, 
	V𝑖𝑡𝑘+1−V𝑖𝑡𝑘+2𝑡𝑘𝑡𝑘+1𝑢𝑢𝑒,𝑖+1𝑇𝑅υ𝑖𝑑𝜏=𝑡𝑘𝑡𝑘+1−𝑒𝑇𝑄𝑒−𝑢𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖𝑑𝜏+Δ𝑖,𝑘
	υ𝑖=𝑢−𝑢𝑑−𝑢𝑒,𝑖, Δ𝑖,𝑘=2𝑡𝑘𝑡𝑘+1−𝑢𝑢𝑒,𝑖+1𝑇𝑅(u−𝑢𝑑)𝑑𝜏
	For Vi and ue,i+1, they can be approximated by linear combinations of a set of linearly independent basis functions,
	𝑉𝑖𝜅,𝜓,𝑋𝐿,𝑒=𝑗=1𝑁𝑉𝜌𝑖,𝑗𝜙𝑖,𝑗𝑉𝜅,𝜓,𝑋𝐿,𝑒
	𝑢𝑒,𝑖+1𝜅,𝜓,𝑋𝐿,𝑒=𝑗=1𝑁𝑢𝜇𝑖,𝑗𝜙𝑖+1,𝑗𝑢𝜅,𝜓,𝑋𝐿,𝑒
	Then, the following equation can be derived.
	𝜌𝑖𝑇Φ𝑖𝑉𝑡𝑘+1−𝜌𝑖𝑇Φ𝑖𝑉𝑡𝑘+2𝑡𝑘𝑡𝑘+1Φ𝑖+1𝑢𝑇𝜇𝑖𝑇𝑅υ𝑖𝑑𝜏=𝑡𝑘𝑡𝑘+1−𝑒𝑇𝑄𝑒−𝑢𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖𝑑𝜏+𝜉𝑖,𝑘
	with 
	v𝑖=𝑢−𝑢𝑑−𝑢𝑒,𝑖, Φ𝑖𝑉= [𝜙𝑖,1𝑉,…, 𝜙𝑖,𝑗𝑉,…,𝜙𝑖,𝑁𝑉𝑉]𝑇
	Φ𝑖𝑢= [𝜙𝑖,1𝑢,…, 𝜙𝑖,𝑗𝑢,…,𝜙𝑖,𝑁𝑢𝑢]𝑇, ρ𝑖=[ρ𝑖,1,…,ρ𝑖,𝑗,…,ρ𝑖,𝑁𝑉]𝑇
	μ𝑖=[μ𝑖,1,…,μ𝑖,𝑗,…,μ𝑖,𝑁𝑢]𝑇
	Therefore, the approximation error is 
	ξ𝑖,𝑘=[Φ𝑖𝑉|𝑡𝑘𝑡𝑘+1]𝑇ρ𝑖+2𝑡𝑘𝑡𝑘+1(𝜐𝑖𝑇𝑅)⨂Φ𝑖+1𝑢𝑇𝑑𝜏𝑣𝑒𝑐(𝜇𝑖+1𝑇)
	Define 𝜉𝑖=[𝜉𝑖,1,…,𝜉𝑖,𝑘,…,𝜉𝑖,𝑙]𝑇 , then the following equation holds
	𝜉𝑖=Λ𝜉,𝑖ρ𝑖𝑣𝑒𝑐(𝜇𝑖+1𝑇)+Ξ𝜉,𝑖
	Ξ𝜉,𝑖=𝑡1𝑡2𝑒𝑇𝑄𝑒+𝑢𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖𝑑𝜏,…,𝑡𝑙𝑡𝑙+1𝑒𝑇𝑄𝑒+𝑢𝑢𝑒,𝑖𝑇𝑅𝑢𝑒,𝑖𝑑𝜏
	Λ𝜉,𝑖=[Φ𝑖𝑉|𝑡1𝑡2]𝑇2𝑡1𝑡2(𝜐𝑖𝑇𝑅)⨂Φ𝑖+1𝑢𝑇𝑑𝜏……[Φ𝑖𝑉|𝑡𝑙𝑡𝑙+1]𝑇2𝑡𝑙𝑡𝑙+1(𝜐𝑖𝑇𝑅)⨂Φ𝑖+1𝑢𝑇𝑑𝜏
	According to least square method, the unknown parameters of the approximations can be calculated by
	ρ𝑖𝑣𝑒𝑐(𝜇𝑖+1𝑇)=−(Λ𝜉,𝑖𝑇Λ𝜉,𝑖)−1Λ𝜉,𝑖𝑇Ξ𝜉,𝑖
	The detailed algorithm is shown in Algorithm 2.
	Algorithm 2. Two-Phase Data-Driven Policy Iteration
	Begin 
	1. Phase-one: solving the regulator equation.
	2. Choose Driving inputs 𝑢𝑥,1 to explore the system.
	3.  Collect data and construct the matrix Ξ𝜀 and Λ𝜀
	4. Estimate 𝑓 and 𝑔.
	5. Calculate 𝑢𝑑
	6. Phase-two: solving the HJB equation.
	7. Repeat
	8. Choose Driving inputs 𝑢𝑥,2 to explore the system.
	9. Collect data and construct the matrix Ξ𝜉,𝑖 and Λ𝜉,𝑖
	10. Calculate 𝑉𝑖 and 𝑢𝑒,𝑖+1
	11. 𝑖←𝑖+1;
	12. until 𝑖>𝑀
	13. update controller 𝑢𝑖𝑡=𝑢𝑒,𝑖+𝑢𝑑.
	In this section, simulations are conducted to show the efficiency of the two-phase data-driven policy iteration approach. 𝑄 and 𝑅 are set as the identity matrix. As shown in Figure 8, initially, the cost is 𝐽=967.87. After 12 iterations, the cost converges to 𝐽=20.08. With the generated by the Algorithm 2, the error states’ trajectory is shown in Figure 9. From these two figures, we can conclude that the learned controller can achieve the combined longitudinal and lateral control and minimize the cost at the same time.
	/
	Figure 8. Cost for each Iteration
	//
	Figure 9. Error States of the Leading-following Vehicles
	In this paper, to achieve the combined longitudinal and lateral optimal control of an autonomous vehicle in the absence of the full knowledge of the following vehicle's dynamic model, we propose a two-phase data-driven policy iteration algorithm. Compared with the traditional model-based control approaches, the proposed algorithm avoids the need to build a mathematical model for the following vehicle and identify the physical parameters of the model. Compared with existing conventional reinforcement learning approaches, the proposed learning algorithm generates a sequence of stable sub-optimal controllers that converge to the optimal controller. In addition, its efficacy has been validated by using numerical simulations.
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